IDL
Connectivity
Bridges

IDL Version 6.3
April 2006 Edition
Copyright © RSI

All Rights Reserved

Restricted Rights Notice

The IDL®, ION Scri pt™, and ION Java™ software programs and the accompanying procedures,
functions, and documentation described herein are sold under license agreement. Their use, dupli-
cation, and disclosure are subject to the restrictions stated in the license agreement. RS reserves
the right to make changes to this document at any time and without notice.

Limitation of Warranty

RSI makes no warranties, either express or implied, asto any matter not expressly set forth in the
license agreement, including without limitation the condition of the software, merchantahility, or
fitness for any particular purpose.

RSI shall not be liable for any direct, consequential, or other damages suffered by the Licensee or
any others resulting from use of the IDL or ION software packages or their documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, RSI grantsyou alimited, nontransferable license to repro-
duce this particular document provided such copies are for your use only and are not sold or dis-
tributed to third parties. All such copies must contain the title page and this notice pagein their
entirety.

Acknowledgments

IDL® isaregistered trademark and ION™, |ON Script™, ION Java™, are trademarks of I TT Industries, registered in the United
States Patent and Trademark Office, for the computer program described herein.

Numerical Recipes™ isatrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ s atrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permission.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2001 The Board of Trustees of the University of Illinois
All rights reserved.

NCSA HDFS5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998-2002 by the Board of Trustees of the University of Illinois. All rights reserved.

CDF Library
Copyright © 2002 National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1999 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.
Portions of this software are copyrighted by DataDirect Technologies, 1991-2003.

Portions of this software were developed using Unisearch's Kakadu software, for which Kodak has a commercial license. Kakadu
Software. Copyright © 2001. The University of New South Wales, UNSW, Sydney NSW 2052, Australia, and Unisearch Ltd,
Australia

Portions of this computer program are copyright © 1995-1999 LizardTech, Inc. All rightsreserved. MrSID is protected by U.S. Patent
No. 5,710,835. Foreign Patents Pending.

Portions of this software are copyrighted by Merge Technologies I ncorporated.
IDL Wavelet Toolkit Copyright © 2002 Christopher Torrence.
Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1

ADOUL the IDL BridgES ..cciiiieeiiiiiieeeeeeeeti et 9
LAY Tz A E N =] o (o= 10
T]I gl oTo =T o [o S 11
Tt oo = o o= 2 12

Part I: Importing into IDL

Chapter 2

Overview: COM and ActiveX in IDLcoovvviiieiiiiiiiiiecie e, 15
(000 Y @ o] 1= ox 530 o N 1 5 O 16
Using COM OBJECES WIth IDLoccuieieciece et nre e 18
Skills Required to Use COM ODJECEScceiiiiieeiicie et se et 20

IDL Connectivity Bridges 3

Chapter 3

Using COM Objects

T PP 21
About Using COM OLJECISIN IDLoueeiiiieecee et 22
IDLcomlDispatch Object Naming SCheme ..o 24
Creating IDLcomIDispatCh ODJECEScceeciveieier et 28
Method Calls on IDLcomIDispatCh OBJECEScceoveeeririeieereseseeee e 29
Managing COM ObjeCt PrOPErti€Scccooviceiiisier et e ettt e 37
Passing Parameter Arrays by REFEIENCEooiiiiieiiireee e 40
References to Other COM ODJECLSovviiiieiieiie e 42
Destroying IDLcomIDispatch ODJECLSccevirierireririesieeeesesee e 43
COM-IDL DataTYPe MaDPING ...cccveeieeieeieeieeieestesresesssesssesssessseessesssesssessssessesssessseenes 44
Example: RSIDEMOCOMPONENTcoiuiriiieeriirieriereeiesie e see e sre e 46
Chapter 4

Using ActiveX Controls iN IDL ... 49
About Using ActiveX ControlSTN IDLccociieeiiieieeeeeese e 50
ActiveX Control Naming SChEMEcccveieieieeeese et 52
Creating ACHVEX CONIOISoueeeieeiierieeeeeere e 53
Method Calls 0N ACHIVEX CONIOIScveieeiriiriirieeeeeie s 55
Managing ActiveX Control Propertiescccovieeeeeenere e 56
ACHVEX WIAJEL EVENLScviviceeeecie sttt e ettt ena e ne s 57
Destroying ACtVEX CONLIOISoiieoieierieeeeiee et re et ee st sne e eneeseesee e 60
Example: Calendar CONLIOLcccveieieiiiieciese et ene e sne e 61
Example: Spreadsheet CONLrolco e 64
Chapter 5

Using Java ODbJeCtS iN IDL ...ccccccuiiiiiiiiiiiieeeeeeee e 69
Overview of UsiNg JAVa ODJECESccecveiiciececece et 70
Initializing the IDL-JaVaBridgeccocoiieierirereeeesese s 73
IDL-Java Bridge Data TYPe Mappingcccoceeeereereireseeriesiesteseesieseesreeseessessesseeseessessens 76
Creating IDL-JaVa ODJECES ..o it 82
Method Calls 0N IDL-Java ObJECESccvivieieiesiecieeeee et st 84
Managing IDL-Java Object PropertieSccoooviereeeerere e 86
Destroying IDL-Java ObJECLSccecceeiierieitieieesie ettt ae e ene e sne s 88
Showing IDL-Java OULPUL IN IDL ..c..eoiiiiieeceeeese et 89
The IDLJavaBridgeSession ODJECLccccviiiierereseseese sttt sre s 90

Contents IDL Connectivity Bridges

JAVAEXCEPLIONS ...veieieieieiie sttt sttt e e ste st ae e e et e te st e e e e testesreenaennenre s 92
IDL-Java Bridge EXAMPIEScceeieriieeeeiesiesee ettt nee s 95
Troubleshooting Y our Bridge SESSIONccecveiiiieeeeiiesc ettt 113

Part II: Exporting from IDL

Chapter 6

EXporting IDL ODJECES ..coiiiiiiieeeeeeeeeeee e 119
Overview of EXporting IDL OBJECLScccoeceieeiesir e 120
WIaDPEr ODJECES ..ottt b et 121
(@ o 1= ol = 0x Y = 124
DL AACCESS ..eiuteiiieeesiee ettt et e st ste e se et e st e st e st e e st e e st e e sbeeebe e eabe e eabeesnbeesneesanneesnneenes 126
Parameter Passing and TYpe CONVEISIONccccceeveeierrieeseeseeseeseeseesseesseessesseesseessns 129
EVENE HANAIING ..ot 132
Supported Platforms and IDL MOGESooiiieiereieeieese e 133
Configuring Build and Client MachingSccccevvieeieienie et 135
Chapter 7

Using the Export Bridge ASSIStantoovviiiiiiiiiiiiiiicccee e 139
Export Bridge ASSIStANT OVEIVIEWc.ooiieeieierieeeeeeeeeseeseeeesee e seeseeseeseeeneeseeseeas 140
RUNNING thE ASSISIANToiviieicieie sttt s reenaenaenre s 141
USING thE ASSISEANT ...ttt e e ee s ne e e s eeseesreeneeneenneas 142
WOrKing With @PIOJECocueeeeee et e 149
BUIldiNG 8N ODJECE ...t neenne s 153
EXPOrting @n ODJECLccuiiiiiciie ettt a e e st reeneenaenre s 154
Specifying Information for EXPOrtingcceoeoerereesesere e 156
Information Skipped DUING EXPOItccccviieieieiiiiese et 170
Exporting a Source ObjeCt’S SUPEICIASSESceoeiriieieiere e 172
Modifying a Source Object After EXPOITccvecveieieeieie et 173
Wrapper Generation EXAMPIEooeeeiriiiiieeeesere e 174
Chapter 8

Using Exported COM ODJECES ...uuuviiiiiiiiiiiiiiiiieeeeeee e 181
Overview of COM EXPOIt ODJECESccevieeeieeie e see e see et e se s e e eee s 182
COM Wrapper ODJECEScoiiuiieeeieeiirieseeeet st 183
Stock Wrapper MEthOdScccociiieceec e 184
EVENE HANAIING ..ot 197

IDL Connectivity Bridges Contents

[o g oo | 1T T RS 200
1= 010 o 1 oo RS 202
Chapter 9

Using Exported Java ODJECEScccooeeeeeiiiiiicces e, 205
Overview of Java EXPort ODJECESccccveiiiir e 206
JAVa WTPPE!r ODJECES ...ttt 207
Stock Wrapper MEthOAScoociiiiicc ettt 208
EVENt HANAIING ..o 221
o) gl =0T | 1T o 230
(D= o 18 To o |1 oo [P PRT PSPPSR 232
Chapter 10

Using the Connector ODJECtcccooeiiiieeiiiiieeeeeercre e, 233
About the IDL COonNECLOr ODJECLeovereeeririerieieese e 234
Preparing to Use the IDL Connector OBJECTcceeceiiviecceeiese e 235
Connector Object COM EXAMPIEScveeriiriirieieeseriesee e 237
Connector Object Java EXaMPIESocvvieieiecicciece et 241
Chapter 11

Writing IDL Objects for EXPOrtingccoeeeieeeeeeiiiieeeeeeiiiiiiicee e 249
(@< V= S 250
Programming LimMitationscccceeveiiiieiicse ettt 251
Exporting Drawable ODJECEScoeereieieeeeere et 252
Drawable Object Canvas EXAMPIEScccceeveiiiiceciesese et 254
Chapter 12

Creating Custom COM EXpPOrt ODJECTSuuvieiiiiiiiiiiiieieieeieiees 257
About COM EXport ObjeCt EXAMPIESccceiririiieinesesieeese st 258
Nondrawable COM EXPOort EXAMPIEcceiieiieieeiece et see e 260
Drawable COM EXPOrt EXAMPIEScccoeiriiriiieieeese s 264
Chapter 13

Creating Custom Java Export Objectscccvviieiiiiiiiiiieeiiiieeeeeeiina, 279
About Java Export Object EXAMPIEScceeiririieiceseeeses e 280
Nondrawable Java EXport EXAMPIEccecveveeiiieeeeese st 282
Drawable Java EXPOrt EXaMPIESccooeieiiriiiieieeese e 286

Contents IDL Connectivity Bridges

Part 1ll: Appendices
Appendix A

IDL Java ODJECT AP ..ot 299
PaCKagE SUMMBIY ...t 300
Appendix B

COM ODbjecCt Creationuuueeiiiiiiiie e e e e e e e e e e e e eeeeannens 449
SAMPIE IDL OBJECL ...t 450
Visua Basic .NET Code SAMPIE ..ottt 453
C++ Client Code SAMPIEveeeeeciece e sre e re s e e re e e e 455
CH COUE SAMPIE ...ttt 457
Visua BasiC 6 COUE SAMPIEeeieeiiecie et e e s snaenree 459
Appendix C

Java ObjJect Creation ..o eeiiiieeeeeee e 461
SAMPIE IDL OBJECL ... s 462
Java Object Initiation Without Parameterscooeeeereie e 465
Java Object Initiation With Parametersccccevieiiiieie s 467
Appendix D

The IDLDrawWidget ActiveX Controlccveiiiiiiieeeeeeeeeeeeeeeiiinens 471
(@< V= S 472
Creating an Interface and Handling EVENLScccocvveriie e 474
Working With IDL ProCEOUESccovveueriiriiieieeriesie st 480
AdvanCed EXAMPIESc.evieeceecee sttt et 483
Copying and Printing IDL GraphiCsccceoirinierirenineseeeese et 484
XLoadCT Functionality Using Visual BaSICcccecvvcvririerrieree e e see e snee e 4388
XPalette Functionality USiNg Visual BaSICcceviiirienieireseesese s 490
Integrating Object GraphiCSUSING VB ...o.veoiieiee ettt 491
Sharing a Grid Control Array With IDLcoocoiiiiiiiieneeerese e 492
Handling Events Within Visual BaSICcccceveeieriieiie e s s 494
Distributing Your ActiveX APPlICALIONccceeeiririnierieeeisee e 496
Appendix E

IDLDrawWidget Control Referenceccccoovvcivviiviviiieiiiicicciieeeeee 497
IDLDIAWWITGEL ..ottt s b e sb e nae e 498
IMBENOUS ...ttt sttt et b e 499

IDL Connectivity Bridges Contents

Do Methods (RUNEIME ONIY) .voveieiee et 509
007 SRS 511
Read ONlY PrOPErti€Socuecieciceciee sttt ettt ene 515
AULO EVENE PrOPEITIES ..ottt st s sneeneas 517
EVEINES <. e b e bt b bt n e naeenes 519
Appendix F

Multidimensional Array Storage and ACCESScccccuvvvvviririieeeeeen. 521
(@< V= S 522
Why Storage and ACCESS MELLETcccvecieeiiieie e ees e e s esnee s 523
Storage and AcCess in COM and IDLcccooiivieiieenirenieeeeses e 524
2D Array EXAMPIES ..o et nne s 526
1o = S 531

Contents IDL Connectivity Bridges

Chapter 1

About the IDL Bridges

This chapter discusses the following topics.

What IsaBridge? 10 IDL ExportBridge
IDL ImportBridge 11

IDL Connectivity Bridges

10 Chapter 1: About the IDL Bridges

What Is a Bridge?

A bridgeisatechnology path that lets applications in different programming
languages or environments share information: for example, between IDL and Java.
With bridge technol ogy, you can use an application that manipulates datain its native
language (e.g., Java) by calling on objects and processes from another language (e.g.,
IDL). In this way, you can take advantage of both environments to solve a problem
that might be otherwise difficult for either environment separately: for example,
embedding an IDL data object in a Java GUI to display a complex data
transformation.

Note
Startup files are not executed when running bridge applications because an IDL
command line is not present. See “Understanding When Startup Files are Not
Executed” in Chapter 1 of the Using IDL manual for details.

IDL supportsimport and export bridge technology. The Import Bridge lets you
import the functionality of a COM or Java object to an IDL application. The Export
Bridge lets you export the functionality of an IDL object to COM or Java application.
See the following for more information:

e “IDL Import Bridge” on page 11
e “|IDL Export Bridge” on page 12

What Is a Bridge? IDL Connectivity Bridges

Chapter 1: About the IDL Bridges 11

IDL Import Bridge

The IDL Import Bridge technology lets you use COM and Java objectsin IDL
applications. For ageneral overview of this technology, see “Overview: COM and
ActiveX in IDL” on page 15.

COM and ActiveX

You have two options for incorporating a COM object into IDL:

e |f the COM object does not have its own interface, you can use the
IDLcomlDispatch object class to communicate with the underlying COM
object through the COM IDispatch interface (see “Using COM Objectsin
IDL” on page 21 for details)

« If the COM aobject does have its own interface (i.e., it isan ActiveX control),
you can use IDL’'s WIDGET_ACTIVEX routine to place the control inan IDL
widget hierarchy (see“Using ActiveX Controlsin IDL” on page 49 for details)

Java

The IDL-Java bridge | ets you access Java objects within IDL code. Java objects
imported into IDL behave like normal IDL objects. The bridge also provides IDL
with access to exceptions created by the underlying Java object. For more
information, see “Using Java Objectsin IDL” on page 69.

IDL Connectivity Bridges IDL Import Bridge

12 Chapter 1: About the IDL Bridges

IDL Export Bridge

The IDL Export Bridge technology lets you use IDL objectsin COM and Java
applications. For ageneral overview of thistechnology, see“Exporting IDL Objects”
on page 119.

Note
The Export Bridge technology isinstalled as part of IDL. For the licensing and
environment reguirements of this technology, see “ Running the Assistant” on
page 141.

With the Export Bridge, interaction with IDL isthrough native Java and COM
wrapper objects that are generated for each IDL object with which client applications
want to interact. The wrapper objects manage all aspects of IDL loading,
initialization, process management, and cleanup, so users need only be familiar with
the client language (for embedding the wrapper in the client application) and the
basics of IDL (for accessing and manipulating IDL data and processes).

Export Bridge Assistant

The key to creating your own exported IDL objects is the Export Bridge Assistant,
which generates these native wrapper objects from IDL objects. The Assistant isan
interactive dialogue in IDL that lets you customize the wrapper object you want to
create from the underlying IDL object. You can select the methods, parameters, and
properties that you want to export, as well as other information about the IDL object
(e.g., whether to convert array majority for parameters). See “Using the Export
Bridge Assistant” on page 139 for details.

Connector Object

Instead of exporting a custom IDL source object using the Assistant, you can also
access | DL functionality using the prebuilt connector object that is shipped with the
IDL distribution. ThisIDL connector object lets you quickly incorporate the
processing power of IDL into an application developed in an external, object-oriented
environment such as COM or Java. The connector object provides a basic,
nondrawabl e wrapper that includes the ability to get and set IDL variables and
execute command statements in the IDL process associated with the connector
object. For more information, see “Using the Connector Object” on page 233.

IDL Export Bridge IDL Connectivity Bridges

Part I: Importing Into
IDL

Chapter 2

Overview: COM and
ActiveX In IDL

This chapter discusses the following topics:

COM Objectsand IDL 16 SkillsRequired to Use COM Objects 20
Using COM ObjectswithIDL 18

IDL Connectivity Bridges 15

16 Chapter 2: Overview: COM and ActiveX in IDL

COM Objects and IDL

Microsoft’'s Component Object Model, or COM, is a specification for devel oping
modular software components. COM is not a programming language or an API, but
an implementation of a component architecture. A component architectureis a
method of designing software components so that they can be easily connected
together, reused, or replaced without re-compiling the application that uses them.
Other examples of this methodology include the Object Management Group’s
Common Object Request Broker Architecture (CORBA) and Sun’s JavaBeans
technologies.

ActiveX controls are a specia class of COM object that follow a set of Microsoft
interface specifications; they are normally designed to present a user interface.

IDL for Windows supports three methods for using COM-based software
components in your applications:

e Exposing aCOM abject as an IDL object
¢ Including an ActiveX control inan IDL widget hierarchy

e Including the IDL DrawWidget ActiveX control in an application written in a
language other than IDL

Note
While COM components can be developed for numerous platforms, most COM-
based software is written for Microsoft Windows platforms. IDL for Windows
supports the inclusion of COM technologies, but IDL for UNIX does not. The
chaptersin this section will discuss COM in the context of Microsoft Windows
exclusively.

What Are COM Objects?

A COM object, or component, is a piece of software that:

e Isalibrary, rather than a stand-alone application (that is, it runsinside some
sort of client application such as IDL, a Visual Basic application, or aWeb
browser)

e Isdistributed in acompiled, executable form

* Exposes agroup of methods and propertiesto its client application

COM Objects and IDL IDL Connectivity Bridges

Chapter 2: Overview: COM and ActiveX in IDL 17

In addition to these criteria, a component may also supply auser interface that can be
manipulated by the user. COM objects that supply a user interface and send events to
the programs that use them are generally packaged as ActiveX controls, athoughitis
not a requirement that an ActiveX control provide a user interface.

COM objects and ActiveX controls are nearly always packaged as Windows
executable (. exe), dynamic link library (. dI |), or object linking and embedding
(. ocx) files.

Why Use COM Objects with IDL?

There are several reasons to use COM technologies alongside IDL:

* COM objects can be designed to use the facilities of the underlying Windows
operating system. If you need access to Windows features not exposed within
IDL, incorporating a COM object into your IDL program may provide the
functionality you need.

* COM objects have been written to provide custom user interface elements or
accomplish specific tasks. Many of these components are available to you free
or at minimal cost. If you work exclusively in a Windows environment,
incorporating a pre-written component in your IDL program may be faster
than coding the same functionality in IDL.

* Using the IDLDrawWidget ActiveX control, you can rapidly incorporate IDL
functionality into a Windows application created with any COM-aware
environment. COM -aware environments include Visual Basic, Visua C++, or
even VBScript.

IDL Connectivity Bridges COM Obijects and IDL

18

Chapter 2: Overview: COM and ActiveX in IDL

Using COM Objects with IDL

The three methods for using COM aobjects with IDL are:
e “Exposing a COM Object asan IDL Object” on page 18
¢ “Including an ActiveX Control in an IDL Widget Hierarchy” on page 18

e “Using the IDLDrawWidget ActiveX Control” on page 19 (in an application
written in alanguage other than IDL)

Exposing a COM Object as an IDL Object

IDL’s IDLcomlDispatch object class creates an IDL object that communicates with
an underlying COM object using the COM abject’s | Dispatch interface. When you
create an | DL coml Dispatch object, you provide theidentifier for the COM object you
wish to use, and IDL handles instantiation of and communication with the object.
You can call the COM object’s methods and get and set its properties using standard
IDL object conventions and syntax.

Note
The IDLcoml Dispatch object is useful when you want to incorporate a generic
COM object into your IDL application. If the COM object you want to use is an
ActiveX control, use the WIDGET_ACTIVEX routine, discussed below.

For details on using the IDL comlIDispatch object class to incorporate COM objects
into your IDL applications, see Chapter 3, “Using COM Objectsin IDL”.

Including an ActiveX Control in an IDL Widget
Hierarchy

IDL’'s WIDGET_ACTIVEX routine incorporates an ActiveX control directly into an
IDL widget hierarchy. This allows you to place the ActiveX control in an IDL widget
interface, and to receive widget events directly from the control for handling by a
standard IDL widget event handler.

Internally, IDL uses the same mechanismsit uses when creating |DLcoml Dispatch
objects when it instantiates an ActiveX control as part of an IDL widget hierarchy.
After the widget hierarchy has been realized, an object reference to the IDL object
that encapsulates the ActiveX control can be retrieved and used as an interface with
the ActiveX control. This alows you to call the ActiveX control’s methods and get
and set its properties using standard IDL object conventions and syntax.

Using COM Objects with IDL IDL Connectivity Bridges

Chapter 2: Overview: COM and ActiveX in IDL 19

For details on using the WIDGET_ACTIVEX routine to incorporate ActiveX
controlsinto your IDL applications, see Chapter 4, “Using ActiveX ControlsinIDL”.

Using the IDLDrawWidget ActiveX Control

IDL for Windows distributions include an ActiveX control that makes IDL
functionality available to other applications. Including the IDL DrawWidget control
in your Windows application lets you create your own user interface using the
programming language of your choice, while using IDL’s data analysis and display
functionality.

Note
The IDLDrawWidget ActiveX control provides a COM interface to IDL, but

requires an IDL installation to function. This meansthat in order for an application
to use the IDL DrawWidget control, alicensed copy of IDL must be installed on the

same computer.

For details on using the IDL DrawWidget ActiveX control in your own Windows
applications, see Appendix D, “The IDLDrawWidget ActiveX Control”.

IDL Connectivity Bridges Using COM Objects with IDL

20 Chapter 2: Overview: COM and ActiveX in IDL

Skills Required to Use COM Objects

Although IDL provides an abstracted interface to COM functionality, you must be
familiar with some aspects of COM to intertwine COM and IDL successfully.

If You Are Using COM Objects

If you are using a COM abject directly, viathe IDLcoml Dispatch object, you will
need a thorough understanding of the COM object you are using, including its
methods and properties. An understanding of the Windows tools used to discover
information about COM objectsis useful.

If You Are Using ActiveX Controls

If you are incorporating an ActiveX control into an IDL widget hierarchy using
WIDGET_ACTIVEX, you will need a thorough understanding of the ActiveX
control you are using, including its methods, properties, and the information returned
when an event is generated. An understanding of the Windows tools used to discover
information about ActiveX controlsis useful.

If You Are Using the IDLDrawWidget ActiveX Control

If you are incorporating the IDL DrawWidget ActiveX control in your own Windows
application, you will need a thorough understanding of your own application
development tools, including how they are used to interact with ActiveX controls.
Details about the IDLDrawWidget control itself are provided in Appendix D, “The
IDLDrawWidget ActiveX Control” and Appendix E, “IDLDrawWidget Control
Reference’.

If You Are Creating Your Own COM Object

If you are creating your own COM object to be included in IDL, you will need a
thorough understanding both of your development environment and of COM itself. It
is beyond the scope of this manual to discuss creation of COM objects, but you
should be able to incorporate any component created by following the COM
specification into IDL by following the procedures outlined here.

Skills Required to Use COM Objects IDL Connectivity Bridges

Chapter 3

Using COM QObjects

In IDL

This chapter discusses the following topics:

About Using COM Objectsin IDL
IDLcomlDispatch Object Naming Scheme . 24
Creating |DL.coml Dispatch Objects
Method Calls on IDLcomlIDispatch Objects 29
Managing COM Object Properties 37

IDL Connectivity Bridges

Passing Parameter Arrays by Reference .. 40
References to Other COM Objects. 42
Destroying IDLcomIDispatch Objects 43

COM-IDL DataTypeMapping 44
Example: RSIDemoComponent 46
21

22 Chapter 3: Using COM Objects in IDL

About Using COM Objects in IDL

If you want to incorporate a COM object that does not present its own user interface
into your IDL application, use IDL’s IDLcomlDispatch object class.

IDL’s IDLcomiDispatch object class creates an IDL object that uses the COM

I Dispatch interface to communicate with an underlying COM object. When you
create an IDLcomlDispatch object, you provide information about the COM object
you wish to use, and IDL handlesinstantiation of and communication with the object.
You can call the COM object’s methods and get and set its properties using standard
IDL object conventions and syntax.

Note
If the COM object you want to use in your IDL application isan ActiveX control,
use the WIDGET_ACTIVEX routine, discussed in Chapter 4, “Using ActiveX
Controlsin IDL”.

Array Data Storage Format

COM, like C, stores array datain row-major format. IDL stores array datain column-
major format. See “ Columns, Rows, and Array Magjority” in Chapter 15 of the
Building IDL Applications manual for a detailed discussion of thisissue and its
implications for IDL application design.

Object Creation

To create an IDL object that encapsulates a COM object, use the OBJ NEW function
as described in “ Creating |DLcoml Dispatch Objects’ on page 28. IDL creates a
dynamic subclass of the IDLcoml Dispatch object class, based on information you
specify for the COM object.

Method Calls and Property Management

Once you have created your IDLcomlDispatch object within IDL, use normal IDL
object method callsto interact with the object. (See Chapter 1, “The Basics of Using
Objectsin IDL" in the Object Programming manual for a discussion of IDL objects.)
COM object properties can be set and retrieved using the GetProperty and
SetProperty methods implemented for the IDLcoml Dispatch class. See “ Method
Callson IDLcomlIDispatch Objects’ on page 29 and “Managing COM Object
Properties’ on page 37 for details.

About Using COM Obijects in IDL IDL Connectivity Bridges

Chapter 3: Using COM Obijects in IDL 23

Object Destruction

Destroy I DLcomlDispatch objects using the OBJ_DESTROY procedure. See
“Destroying IDLcomlDispatch Objects’ on page 43 for details.

Registering COM Components on a Windows
Machine

Before a COM object or ActiveX control can be used by aclient program, it must be
registered on the Windows machine. In most cases, components are registered by the
program that installs them on the machine. If you are using a component that is not
installed by an installation program that handles the registration, you can register the
component manually.

To register acomponent (. dl | or . exe) or acontrol (. ocx), use the Windows
command line program r egsvr 32, supplying it with name of the component or
control to register. For example, the IDL distribution includesa COM component
named RSIDemoComponent, contained in afile named RSI DenoConponent . dl |
located in the exanpl es\ doc\ bri dges\ COMsubdirectory of the IDL distribution.
To register this component, do the following:

1. Open aWindows command prompt.

2. Change directoriesto the exanpl es\ doc\ bri dges\ COMsubdirectory of the
IDL distribution.

3. Enter the following command:
regsvr 32 RSI DenpConponent . dl |

Windows will display a pop-up dialog informing you that the component has been
registered. (You can specify the" / s " parameter to r egsvr 32 to prevent the dialog
from being displayed.)

Note
You only need to register acomponent once on a given machine. It is not necessary
to register a component before each use.

IDL Connectivity Bridges About Using COM Obijects in IDL

24 Chapter 3: Using COM Objects in IDL

IDLcomIDispatch Object Naming Scheme

When you create an | DLcoml Dispatch object, IDL automatically creates a dynamic
subclass of the IDLcomlDispatch class to contain the COM object. IDL determines
which COM object to instantiate by parsing the class name you provide to the
OBJ_NEW function. You specify the COM aobject to use by creating a class name
that combines the name of the base class (IDL coml Dispatch) with either the COM
classidentifier or the COM program identifier for the object. The resulting class
name looks like

| DLcom Di spat ch$l D_t ype$l D
where ID_type is one of the following:
e CLSI Dif the object isidentified by its COM class ID
e PROA Dif the object isidentified by its COM program ID
and ID isthe COM object’s actua class or program identifier string.

Note
While COM objects incorporated into IDL are instances of the dynamic subclass
created when the COM object is instantiated, they still expose the functionality of
the class IDLcoml Dispatch, which isthe direct superclass of the dynamic subclass.
All IDLcomlDispatch methods are available to the dynamic subclass.

Class Identifiers

A COM object’s class identifier (generally referred to asthe CLSID) is a 128-hbit
identifying string that is guaranteed to be unique for each object class. The strings
used by COM as class IDs are also referred to as Globally Unique Identifiers
(GUIDs) or Universally Unique Identifiers (UUIDs). It is beyond the scope of this
chapter to discuss how class | Ds are generated, but it is certain that every COM
object has aunique CLSID.

COM class|Ds are 32-character strings of alphanumeric characters and numerals that
look like this:

{ A77BC2B2- 88EC- 4D2A- B2B3- F556 ACB52E52}

The above class identifier identifies the RSIDemoComponent class included with
IDL.

IDLcomIDispatch Object Naming Scheme IDL Connectivity Bridges

Chapter 3: Using COM Obijects in IDL 25

When you create an | DLcoml Dispatch object using a CLSID, you must modify the
standard CLSID string in two ways:

1. You must omit the opening and closing braces ({ }).

2. You must replace the dash characters (-) in the CLSID string with
underscores (_).

See “ Creating |DLcoml Dispatch Objects” on page 28 for example class names
supplied to the OBJ NEW function.

Note
If you do not know the class ID of the COM object you wish to expose asan IDL
object, you may be able to determine it using an application provided by Microsoft.
See “Finding COM Class and Program IDs’ on page 26 for details.

Program Identifiers

A COM object’s program identifier (generally referred to as the PROGID) isa
mapping of the class identifier to a more human-friendly string. Unlike class I Ds,
program | Ds are not guaranteed to be unique, so namespace conflicts are possible.
Program IDs are, however, easier to work with; if you are not worried about name
conflicts, use the identifier you are most comfortable with.

Program IDs are a phanumeric strings that can take virtually any form, although by
convention they look like this:

PROGRAM Conponent . ver si on

For example, the RSIDemoComponent class included with IDL has the following
program ID:

RSI DenmpConponent . RSI DenoOhj 1. 1

When you create an |DLcoml Dispatch object using a PROGID, you must modify the
standard PROGID string by replacing the dot characters (.) with underscores ().

See “ Creating DL comlDispatch Objects’ on page 28 for example class names
supplied to the OBJ_NEW function.

Note
If you do not know the program ID of the COM object you wish to expose as an
IDL object, you may be able to determine it using an application provided by
Microsoft; see “Finding COM Class and Program IDs’ on page 26 for details.

IDL Connectivity Bridges IDLcomIDispatch Object Naming Scheme

26 Chapter 3: Using COM Objects in IDL

Finding COM Class and Program IDs

In generadl, if you wish to incorporate a COM aobject into an IDL program, you will
know the COM class or program ID — either because you created the COM object
yourself, or because the devel oper of the object provided you with the information.

If you do not know the class or program ID for the COM object you want to use, you
may be able to determine them using the OLE/COM Object Viewer application
provided by Microsoft. You can download the OLE/COM Object Viewer at no
charge directly from Microsoft. As of thiswriting, you can locate the tool by pointing
your Web browser to the following URL :

http://www.microsoft.com/com
and then selecting Downloads from the Resour ces menu.

The OLE/COM Object Viewer displays all of the COM objectsinstalled on a
computer, and allows you to view information about the objects and their interfaces.

5 OLE/COM Dbject Yiewer] 3

File ©hject Yiew Help

=3 £l P |

--égz RequestMakeCall Class | Hoicon FSIDemalbjl Class

@, Reveal Transition Akl (i 77RCR2-BBEC-4D 24 B2E 3 FE5RACEE2E 62}
¢ RevealTrans

--égz RichText Apppearance
[, RichText General Prope LS = -

"é'fz RIPBWizard Class L [ATTBC2EE-B0EC-402 A-B2E3-FS5S6ACES2ESS} = RSIDemacbil Class
-G Ripple

i X InprocServer3z [<no name>] = d:\RSIdd\RSIDEM-~1.DLL
"éz RM Enlls.tment Helper InprocServer3Z [ThreadingModel] = Apartment

"éﬁ RMGetLicense Class PraglD = RSIDemaComponent. RSIDemaohil. 1

--égz Role-based Security Po - Programmable

@ Rall Typelib = {62AD7BE6-8067-48F7-B392-7F458936 1DCE}

"@ RotateBvr Class - YersionIndependentProgIh = RSIDemoomponent.RSIDemochil
@, Route Class

--égz RowsetHelper

.08

Registry Implementationl Activationl Launch Permissionsl Access Permissions

R_SIDemoComponent.RSIDemoObjl.1 = RSIDemoObjl Class
| “ CLSID = {A7TBC2E2-30EC-402A-B2B3-FSS6ACES2ES2}
Typelib =

"é’z‘z R
@, RSIDemoObj3 Class

B, RTP Class _I;I o =
4 I I »

Figure 3-1: Microsoft's OLE/COM Object Viewer Application

Note
You can copy an object’s class ID to the clipboard by selecting the object in the
leftmost panel of the object viewer, clicking the right mouse button, and selecting
“Copy CLSID to Clipboard” from the context menu.

IDLcomIDispatch Object Naming Scheme IDL Connectivity Bridges

http://www.microsoft.com/com

Chapter 3: Using COM Obijects in IDL 27

If you have an IDL program that instantiates a COM object running on your
computer, you can determine either the class ID or the program ID by using the
HEL P command with the OBJECTS keyword. IDL displays the full dynamic
subclass name, including the class ID or program ID that was used when the object

was created.

IDL Connectivity Bridges IDLcomIDispatch Object Naming Scheme

28 Chapter 3: Using COM Objects in IDL

Creating IDLcomIDispatch Objects

To expose a COM object as an IDL object, use the OBJ NEW function to create a
dynamic subclass of the IDLcomlDispatch object class. The name of the subclass
must be constructed as described in “ DL coml Dispatch Object Naming Scheme” on
page 24, and identifies the COM object to be instantiated.

Note
If the COM object you want to use within IDL isan ActiveX control, use the
WIDGET_ACTIVEX routine as described in Chapter 4, “Using ActiveX Controls
inIDL". Instantiating the ActiveX control as part of an IDL widget hierarchy allows
you to respond to events generated by the control, whereas COM objects that are
instantiated using the OBJ_NEW do not generate eventsthat IDL is aware of.

For example, suppose you wish to include a COM component with the class ID
{ A77BC2B2- 88EC- 4D2A- B2B3- F556ACB52E52}

and the program ID
RSI DenoConponent . RSI DenoCbj 1. 1

inan IDL program. Use either of the following calls to the OBJ NEW function:

bj Ref = OBJ_NEW $
' | DLconl Di spat ch$CLSI DSA77BC2B2_88EC 4D2A B2B3_F556ACB52E52')

or

Obj Ref = OBI_NEW $
"1 DLcoml Di spat ch$PROG D$RSI DenpConponent _RSI DenoCbj 1_1")

IDL’sinternal COM subsystem instantiates the COM aobject within an
IDL comlDispatch object with one of the following the dynamic class names

| DLconl Di spat ch$CLSI D$A77BC2B2_88EC 4D2A B2B3_F556ACB52E52
or
| DLcom Di spat ch$PROG D$RSI DenoConponent _RSI DenpObj 1_1

and sets up communication between the object and IDL. You can work with the
IDLcomlDispatch object just as you would with any other IDL object; calling the
object’s methods, and getting and setting its properties.

See“IDLcomIDispatch” in the IDL Reference Guide manual for additional details.

Creating IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Obijects in IDL 29

Method Calls on IDLcomIDispatch Objects

IDL alowsyou to call the underlying COM object’s methods by calling methods on
the IDLcomlDispatch object. IDL handles conversion between IDL data types and
the datatypes used by the component, and any results are returned in IDL variables of
the appropriate type.

Aswith all IDL objects, the general syntax is:
result = Obj Ref -> Method([Argunents])
or
Obj Ref -> Method[, Argunents]

where Obj Ref isan object reference to an instance of a dynamic subclass of the
IDL.comlDispatch class.

Function vs. Procedure Methods

In COM, all object methods are functions. IDL’s implementation of the

IDL comlDispatch object maps COM methods that supply areturn value using the
retval attribute as IDL functions, and COM methods that do not supply areturn
vaueviather et val attribute as procedures. See “ Displaying Interface Information
using the Object Viewer” on page 33 for more information on determining which
methods use ther et val attribute.

ThelDLcomlDispatch::GetProperty and | DL comlI Dispatch:: SetProperty methods are
special cases. These methods are IDL object methods — not methods of the
underlying COM abject — and they use procedure syntax. The process of getting and
setting properties on COM objects encapsulated in IDLcoml Dispatch objectsis
discussed in “Managing COM Object Properties’ on page 37.

Note
The IDL object system uses method names to identify and call object lifecycle
methods (Init and Cleanup). If the COM object underlying an IDL coml Dispatch
object implements Init or Cleanup methods, they will be overridden by IDL’s
lifecycle methods, and the COM object’s methods will be inaccessible from IDL.
Similarly, IDL implements the GetProperty and SetProperty methods for the
IDLcomliDispatch object, so any methods of the underlying COM object that use
these names will be inaccessible from IDL.

IDL Connectivity Bridges Method Calls on IDLcomIDispatch Objects

30 Chapter 3: Using COM Objects in IDL

What Happens When a Method Call Is Made?

When amethod is called on an I DL coml Dispatch object, the method name and
arguments are passed to the internal IDL COM subsystem, where they are used to
construct the appropriate | Dispatch method calls for the underlying COM object.

From the point of view of an IDL user issuing method calls on the IDLcomlIDispatch
object, this process is completely transparent. The IDL user simply calls the COM
object’s method using IDL syntax, and IDL handles the trand ation.

Data Type Conversions

IDL and COM use different data types internally. While you should be aware of the
types of data expected by the COM object’s methods and the types it returns, you do
not need to worry about converting between IDL data types and COM data types
manually. IDL’s dynamic type conversion facilities handle al conversion of data
types between IDL and the COM system. The data type mappings are described in
“COM-IDL Data Type Mapping” on page 44.

For example, if the COM object that underlies an IDLcomlIDispatch object has a
method that requires avalue of type INT as an input argument, you would supply the
valueasan IDL Long. If you supplied the value as any other IDL datatype, IDL
would first convert the valueto an IDL Long using its normal data type conversion
mechanism before passing the value to the COM object as an INT.

Similarly, if aCOM object returns aBOOL value, IDL will place thevaluein a
variable of Byte type, with avalue of 1 (one) signifying True or avaue of O (zero)
signifying False.

Optional Arguments

Like IDL routines, COM object methods can have optional arguments. Optional
arguments eliminate the need for the calling program to provide input data for all
possible arguments to the method for each call. The COM optional argument
functionality is passed along to COM object methods called on DL comlIDispatch
objects, and to the IDLcomlDispatch::GetProperty method. This meansthat if an
argument is not required by the underlying COM object method, it can be omitted
from the method call used on the IDL comiDispatch object.

Method Calls on IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Obijects in IDL 31

Note
Only method arguments defined with the opt i onal token in the object’s interface
definition are optional. See “ Displaying Interface Information using the Object
Viewer” on page 33 for more information regarding the object’s interface definition
file.

Warning
If an argument that is not optional is omitted from the method call used on the
IDLcomlIDispatch object, IDL will generate an error.

Argument Order

Like IDL, COM treats arguments as positional parameters. This means that it makes
adifference where in the argument list an argument occurs. (Contrast thiswith IDL’s
handling of keywords, which can occur anywhere in the argument list after the
routine name.) COM enforces the following ordering for arguments to object
methods:

1. Required arguments
2. Optional arguments for which default values are defined
3. Optiona arguments for which no default values are defined

The same order applies when the method is called on an IDLcoml Dispatch object.
Default Argument Values

COM allows objects to specify a default value for any method arguments that are
optional. If acall to amethod that has an optional argument with a default value
omits the optional argument, the default value is used. IDL behavesin the same way
as COM when calling COM object methods on | DL coml Dispatch objects, and when
calling the IDLcomlDispatch::GetProperty method.

Method arguments defined with the def aul t val ue() tokeninthe object’sinterface
definition are optional, and will use the specified default value if omitted from the
method call. See “ Displaying Interface Information using the Object Viewer” on
page 33 for more information regarding the object’s interface definition file.

Argument Skipping

COM allows methods with optional argumentsto accept a subset of the full argument
list by specifying which arguments are not present. This allows the calling routine to
supply, for example, the first and third arguments to a method, but not the second.
IDL provides the same functionality for COM object methods called on

IDL Connectivity Bridges Method Calls on IDLcomIDispatch Objects

32

Chapter 3: Using COM Objects in IDL

IDLcomliDispatch objects, but not for the IDLcoml Dispatch::GetProperty or
SetProperty methods.

To skip one or more arguments from alist of optional arguments, include the SKIP
keyword in the method call. The SKIP keyword accepts either a scalar or a vector of
numbers specifying which arguments are not provided.

Note
Theindicesfor the list of method arguments are zero-based — that is, the first

method argument (either optional or required) is argument O (zero), the next is
argument 1 (one), etc.

For example, suppose a COM object method accepts four arguments, of which the
second, third, and fourth are optional:

hj Met hod, argl, arg2-optional, arg3-optional, arg4-optional

To call this method on the IDL coml Dispatch object that encapsulates the underlying
COM abject, skipping ar g2, use the following command:

obj Ref - >Cbj Met hod, argl, arg3, arg4, SKIP=1

Note that the SK1P keyword uses the index value 1 to indicate the second argument in
the argument list. Similarly, to skip ar g2 and ar g3, use the following command:

obj Ref - >Cbj Met hod, argl, arg4, SKIP=[1, 2]

Finally, note that you do not need to supply the SKIP keyword if the arguments are
supplied in order. For example, to skip ar g3 and ar g4, use the following command:

obj Ref - >Cbj Met hod, argl, arg2

Finding Object Methods

In most cases, when you incorporate a COM object into an IDL program, you will
know what the COM object’s methods are and what arguments and data types those
methods take, either because you created the COM object yourself or because the
developer of the object provided you with the information.

If for some reason you do not know what methods the COM object supports, you may
be able to determine which methods are available and what parameters they accept
using the OLE/COM Object Viewer application provided by Microsoft. (See“Finding
COM Class and Program IDS’ on page 26 for information on acquiring the
OLE/COM Object Viewer.)

Method Calls on IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Obijects in IDL 33

Warning
Finding information about a COM abject’s methods using the OLE/COM Object
Viewer requires a moderately sophisticated understanding of COM programming,
or at least COM interface definitions. While we provide some hintsin this section
on how to interpret the interface definition, if you are not already familiar with the
structure of COM objects you may find this material inadequate. If possible, consult
the developer of the COM aobject you wish to use rather than attempting to
determine its structure using the object viewer.

Displaying Interface Information using the Object Viewer

You can use the OLE/COM Object Viewer to view the interface definitions for any
COM abject on your Windows machine. Select aCOM object in the leftmost panel of
the object viewer, click the right mouse button, and select “ View Type
Information...” A new window titled “1TypeLib Viewer” will be displayed, showing
al of the component’s interfaces (Figure 3-2).

; ITypeLib Yiewer ;Iglll
File Wiew

8l ol 2|

E" RSIDEMOCOMPOMENTLIb (RSIDemaComp |/ Generated .IDL file (by the OLE/COM Object Viewar) j
: iy

- coclass RSIDemoohit

: dispinterface IRSIDemoobjl
interface IRSIDemoObj1 I
@ coclass RSIDemoCbiz uuid{62ADTRE6-8D67-48F7-BE22-TF48893610CE] ,

dispinterface IRSIDemoObi2 ;EISi?’::l-D']l;{SID o £ 1.0 Type Lib)

. . elpstring (" ol omporEn: . = Library").

inkerface IRSIDemDQbJZ custom (DE77BAS4-5170-1101-A20A-0000F87730E9, 83951780),

@ coclass RSIDemoObj3 custom (DET7BAG3-5170-1101-A2DA-0000F2773CE9, 1017680769

+ dispinterface IRSIDemoObj3

-9 interface IRSIDemoOk}3 1
library RSIDEMOCOMPONENTLib

{

/¢ typelib filename: RSIDemclomponent . dll

{4 TLib // TLib : OLE Automaticon : (00020430-0000-
0o00-Co00-000000000046)
importlib({"stdole2.t1b") ;

/¢ Forward declare all types defined in this typelib
interface IRSIDemctbil;

d | I | I o i El
Ready S
Figure 3-2: Viewing a COM Object’s Interface Definition
Note

Thetop linesin the right-hand panel will say something like:

/1l Generated .IDL file (by the OLE/ COM Cbj ect Vi ewer)
/11

IDL Connectivity Bridges Method Calls on IDLcomIDispatch Objects

34

Chapter 3: Using COM Objects in IDL

/1 typelib filename: RSIDenmoConponent. dl |

The".1DL file" inthiscase hasnothing to do with IDL, the Interactive Data
Language. Here" |1 DL" stands for Interface Description Language — alanguage
used to define component interfaces. If you are familiar with the Interface
Description Language, you can often determine what a component is designed to

With the top-level object selected in the left-hand pane of the I Typelib Viewer, scroll
down in the right-hand pane until you find the section that defines the IDispatch
interface for the object in question. The definition will look something like this:

interface I RSIDenoGbj 1 : |Dispatch {

[i d(0x00000001)]
HRESULT Get CLSI D([out, retval] BSTR* pBstr);
[i d(0x00000002), propput]
HRESULT MessageStr([in] BSTR pstr);
[i d(0x00000002), propget]
HRESULT MessageStr([out, retval] BSTR* pstr);
[i d(0x00000003)]
HRESULT Di spl ayMessageStr();
[i d(0x00000004)]
HRESULT Msg2l nPar ams(
[in] BSTR str,
[in] long val,
[out, retval] BSTR* pVal);
[i d(0x00000005)]
HRESULT Get | ndexQhj ect (
[in] long ndxQoj,
[out, retval] IDispatch** ppbisp);
[i d(0x00000006)]
HRESULT Get ArrayOf Obj ect s(
[out] long* pOhj Count,
[out, retval] VARI ANT* psa(bjs);

Method definitions ook like this:

[id(0x00000001)]
HRESULT Get CLSID([out, retval] BSTR* pBstr);

wherethelineincluding thei d string is an identifier used by the object to refer toits
methods and the following line or lines (usually beginning with HRESULT) define the
method'’s interface.

Again, whileit is beyond the scope of this manual to discuss COM object methodsin
detail, the following points may assist you in determining how to use a COM object:

Method Calls on IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Obijects in IDL 35

* Methods whose definitionsinclude ther et val attribute will appear in IDL as
functions.

[i d(0x00000001)]
HRESULT Get CLSID([out, retval] BSTR* pBstr);

e Methods that do not include ther et val attribute will appear in IDL as
procedures.

[i d(0x00000003)]
HRESULT Di spl ayMessageStr();

» Methods whose definitionsinclude the pr opget attribute allow you to retrieve
an object property using the IDLcomlDispatch::GetProperty method. You
cannot call these methods directly in IDL; see “Managing COM Object
Properties’ on page 37 for additional details.

[d(0x00000002), propget]
HRESULT MessageStr([out, retval] BSTR* pstr);

* Methods whose definitions include the pr opput attribute allow you to set an
object property using the IDLcomlIDispatch::SetProperty method. You cannot
call these methods directly in IDL; see*“Managing COM Object Properties’ on
page 37 for additional details.

[1d(0x00000002), propput]
HRESULT MessageStr([in] BSTR pstr);

e Methods that accept optiona input values will include the opt i onal tokenin
the argument’s definition. For example, the following definition indicates that
the second input argument is optional:

[i d(0x00000004)]

HRESULT Msglor 2l nPar ans(
[in] BSTR str,
[in, optional] int val,

[out, retval] BSTR* pVal);

* Methods that provide default values for optional arguments replace the
opti onal tokenwiththedef aul t val ue() token, wherethe default value of
the argument is supplied between the parentheses. For example, the following
definition indicates that the second input argument is optional, and has a
default value of 15:

HRESULT Msglor 2l nPar ans(
[in] BSTR str,
[in, defaul tvalue(15)] int val,
[out, retval] BSTR* pVal);

e While methods generally return an HRESULT value, thisis not a requirement.

IDL Connectivity Bridges Method Calls on IDLcomIDispatch Objects

36 Chapter 3: Using COM Objects in IDL

Displaying Interface Information Using the IDL HELP
Procedure
If you have an IDL program that instantiates a COM object running on your
computer, you can determine either the class ID or the program ID by using the

HEL P command with the OBJECTS keyword. IDL displays alist of objects, aong
with their methods, with function and procedure methods in separate groups for each

object class.

Method Calls on IDLcomIDispatch Objects IDL Connectivity Bridges

Chapter 3: Using COM Obijects in IDL 37

Managing COM Object Properties

As aconvenience to the IDL programmer, COM object methods that have been
defined using the pr opget and pr opput attributes are accessible viathe
IDLcomlDispatch object’s GetProperty and SetProperty methods. This means that
rather than calling the COM abject’s methods directly to get and set property values,
you use the standard IDL syntax.

Note
If a COM object method’s interface definition includes either the pr opget or the
pr opput attribute, you must use the IDL GetProperty and SetProperty methods to
get and set values. IDL does not allow you to call these methods directly.

Aswith all IDL objects, the IDL coml Dispatch object’s GetProperty and SetProperty
methods use procedure syntax. Keywords to the methods represent the names of the
properties being retrieved or set, and the keyword val ues represent either an IDL
variableinto which the property valueis placed or an IDL expression that isthe value
to which the property is set. You must use the procedure syntax when calling either
method, even if the underlying COM object methods being used are functions rather
than procedures.

Setting Properties

To set aproperty value on a COM object, use the following syntax:
bj Ref - >Set Property, KEYWORD=Expressi on

where Obj Ref isthe IDLcomlDispatch object that encapsulates the COM object,
KEYWORD isthe COM object property name, and Expression is an IDL expression
representing the property value to be set.

If the underlying COM aobject’s pr opput method requires additional arguments, the
arguments are supplied in the set Pr oper t y method call, using the following
syntax:

bj Ref - >Set Property [, arg0O, argl, ... argn], KEYWORD=Expression
Note
KEYWORD must map exactly to the full name of the underlying COM object’s
property setting method. The partial keyword name functionality provided by IDL
is not valid with IDL.coml Dispatch objects.

You can set multiple property values in a single statement by supplying multiple
KEYWORD=Expression pairs.

IDL Connectivity Bridges Managing COM Object Properties

38

Chapter 3: Using COM Objects in IDL

IDL lets you to set multiple properties at once in the same SetProperty call. For
example:

bj Ref - >Set Property, OPTION=1, | NDEX=99L
This command is equivalent to the following lines:

bj Ref - >Set Property, OPTI ON=1
hj Ref - >Set Property, | NDEX=99L

If you pass parameters when setting multiple properties, the parameter or parameters
are sent to each property being set. For example:

bj Ref - >Set Property, 'Parml', 24L, oRef, OPTI ON=1, | NDEX=99L
This command is equivalent to the following lines:

bj Ref - >Set Property, 'Parml', 24L, oRef, OPTI ON=1
bj Ref - >Set Property, 'Parml', 24L, oRef, | NDEX=99L

Thus, when you are setting multiple properties at the same time and passing
parameters, al the properties that are set at the same time must be defined as
receiving the same sets of parameters.

Getting Properties

To retrieve a property value from a COM object, use the following syntax:
hj Ref - >Get Property, KEYWORD=Vari abl e

where Obj Ref isthe IDLcomlDispatch object that encapsulates the COM object,
KEYWORD isthe COM object property name, and Variable is the name of an IDL
variable that will contain the retrieved property value.

Note
KEYWORD must map exactly to the full name of the underlying COM object’s
property getting method. The partial keyword name functionality provided by IDL
isnot valid with IDLcoml Dispatch objects.

You can get multiple property valuesin a single statement by supplying multiple
KEYWORD=Variable pairs.

Because some of the underlying COM object’s pr opget methods may require
arguments, the IDL.coml Dispatch object’s GetProperty method will accept optional
arguments. To retrieve a property using a method that takes arguments, use the
following syntax:

bj Ref ->Get Property [, arg0, argl, ... argn], KEYWORD=Variable

Managing COM Object Properties IDL Connectivity Bridges

Chapter 3: Using COM Obijects in IDL 39

Note, however, that if arguments are required, you can only specify one property to
retrieve.

IDL Connectivity Bridges Managing COM Object Properties

40

Chapter 3: Using COM Objects in IDL

Passing Parameter Arrays by Reference

By default, IDL arrays are passed to and received from the COM subsystem “by
value”, meaning the array is copied. When dealing with large arrays or alarge
number of arrays, performance may suffer due to the by value passing scheme.
However, you can implement “by reference” array passing, which passes an IDL
array to a COM abject in such away that the COM object can directly alter the IDL
array memory without the cost of marshaling (copying) the array to or from the COM
object. This can increase performance and save system memory allocation.

An|DL array parameter is passed by reference to a COM method when the parameter
isdefined as an IDL pointer to an array. For example:

L1 NDGEN(100)
PTR_NEW nyarr, /NO_COPY)

myarr
mypt r

or
myptr = PTR_NEW LI NDGEN(100), /NO_COPY)
Then, the pointer is passed like anormal parameter:

PRI NT, *nyptr ; array before call
obj - >UseArrayRef, nyptr
PRI NT, *nyptr ; altered array after call

The IDL array must be large enough for the client's use. On the COM side:

e The COM object cannot resize the array (although the COM object does not
have to use or set all the elementsin the array)

e The COM object cannot change the type of elements
e The COM object cannot change the dimensionality of the array

Thus, for multidimensional arrays, IDL must define the source array with the same
dimensions as the COM client expects.

In order for the IDL-COM subsystem to know that an IDL array should be passed by
reference, it looks at the source IDL variable to make sure it is a pointer to an array,
and that the destination COM method parameter is also declared as an array. Thus, it
isimportant to properly declare the destination COM parameter as a

SAFEARRAY (<type>), when implementing in C++.

For example, if the desireisto passan IDL array of 32-bit integer valuesto a COM
client, the COM method parameter needs to be declared like this:

[in, out] SAFEARRAY(Iong) psa

Passing Parameter Arrays by Reference IDL Connectivity Bridges

Chapter 3: Using COM Obijects in IDL 41

For the code example above, the full method signature in C++/ATL is:
HRESULT UseArrayRef ([in, out] SAFEARRAY(I|ong) psa);

When implementing a COM-callable class in C# and passing in an array of 32-bit
integers, declare the method as:

public void UseArrayRef ([Marshal As(UnmanagedType. Saf eArr ay,
Saf eArr aySubType=Syst em Runti ne. | nt er opSer vi ces. Var Enum VT_| 4)]
ref long [] arr)

arr[0]
arr[1]
/] etc
}

Itiscritical to make surethat the element size of the IDL array matches the element
size declared in the COM method signature. If they don't, amarshaling error occurs
because the marshaler checks for consistency between the source and destination.
Thisissueis notorious for causing problems with element types of “int” and “long”.
For example, trying to call either of the two COM method signatures above with an
IDL “integer” array would cause an error since IDL “integers’ are 16-bits by default
and C++/COM “ints” are 32-bits. Thus, in the code above, we declared the IDL array
as“long” values, which are 32-bits and match the C++/COM *“long” valuein size.

= 10;
= 11;

Unsupported Array Types

You cannot pass an array by referenceif the array consists of one of the following
types:

e Strings

e Object references

e IDL pointers

» IDL structures

IDL Connectivity Bridges Passing Parameter Arrays by Reference

42 Chapter 3: Using COM Objects in IDL

References to Other COM Objects

It is not uncommon for COM objects to return references to other COM objects,
either as a property value or via an object method. If an |DLcoml Dispatch object
returns a reference to another COM object’s I Dispatch interface, IDL automatically
creates an | DL.coml Dispatch object to contain the object reference.

For example, suppose the Get & her Obj ect method to the COM object
encapsulated by the IDLcoml Dispatch abject Chj 1 returns areference to another
COM object.

hj 2 = oj 1->CGet O her Obj ect ()

Here, Chj 2 isan IDLcomlDispatch object that encapsul ates some other COM object.
Obj 2 behavesin the same manner as any | DLcoml Dispatch object.

Note that IDL comlDispatch objects created in this manner are not linked in any way
to the object whose method created them. In the above exampl e, this means that
destroying Obj 1 does not destroy Obj 2. If the COM object you are using creates new
IDL comlDispatch objectsin this manner, you must be sure to explicitly destroy the
automatically-created objects along with those you explicitly create, using the

OBJ DESTROY procedure.

References to Other COM Objects IDL Connectivity Bridges

Chapter 3: Using COM Obijects in IDL 43

Destroying IDLcomIDispatch Objects

Use the OBJ DESTRQOY procedure to destroy and | DLcoml Dispatch object.

When OBJ DESTROY is called with an IDLcoml Dispatch object as an argument,
the underlying reference to the COM object isreleased and IDL resources relating to

that object are freed.

Note
Destroying an |DLcoml Dispatch object does not automatically cause the
destruction of the underlying COM object. COM employs a reference-counting
methodol ogy and expects the COM object to destroy itself when there are no
remaining references. When an IDL coml Dispatch object is destroyed, IDL simply
decrements the reference count on the underlying COM object.

Note
IDL does not automatically destroy an object when the object variable goes out of

scope (e.g., when a procedure returns). If the IDLcoml Dispatch object is not
explicitly destroyed, the COM reference count is not documented, which could
keep the object instantiated and never rel eased.

IDL Connectivity Bridges Destroying IDLcomIDispatch Objects

44

Chapter 3: Using COM Objects in IDL

COM-IDL Data Type Mapping

When data moves from IDL to a COM object and back, IDL handles conversion of
variable data types automatically. The data type mappings are shown in Table 3-1.

COM Type

IDL Type

BOOL (VT_BOOL)

Byte (true =1, false=0)

ERROR Long

(VT_ERROR)

CY (VT_CY) Double (see note below)
DATE (VT_DATE) Double

11(VT_l1) Byte

INT (VT_INT) Long

UINT (VT_UINT)

Unsigned Long

VT_USERDEFINED

The IDL typeis passed through

VT _UIL Byte
VT 12 Integer

VT _Ul2 Unsigned integer
VT_ERROR Long

VT_l14 Long

VT Ul4 Unsigned Long
VT_18 Long64

VT _UI8 Unsigned Long 64
VT R4 Float

VT_BSTR String

VT_RS8 Double

Table 3-1: IDL-COM Data Type Mapping

COM-IDL Data Type Mapping

IDL Connectivity Bridges

Chapter 3: Using COM Objects in IDL

45

COM Type

IDL Type

VT_DISPATCH

IDLcomliDispatch

VT_UNKNOWN

IDLcomlDispatch

Table 3-1: IDL-COM Data Type Mapping (Continued)
Note on the COM CY Data Type

The COM CY datatypeisascaled 64-bit integer, supporting exactly four digitsto the
right of the decimal point. To provide an easy-to-use interface, IDL automatically
scales the integer as part of the data conversion that takes place between COM and
IDL, alowing the IDL user to treat the number as a double-precision floating-point
value. When the value is passed back to the COM object, it will be truncated if there
are more than four significant digits to the right of the decimal point.

For example, the IDL double-precision value 234. 56789 would be passed to the

COM object as234. 5678.

IDL Connectivity Bridges

COM-IDL Data Type Mapping

46 Chapter 3: Using COM Objects in IDL

Example: RSIDemoComponent

This example uses a COM component included in the IDL distribution. The
RSIDemoComponent is included purely for demonstration purposes, and does not
perform any useful work beyond illustrating how DL comlDispatch objects are
created and used.

The RSIDemoComponent is contained in a file named RSI DenoConponent . di |
located in the exanpl es\ doc\ bri dges\ COMsubdirectory of the IDL distribution.
Before attempting to execute this example, make sure the component is registered on
your system as described in “ Registering COM Components on a Windows Machine”
on page 23.

There are three objects defined by the RSIDemoComponent. The example begins by
using RSIDemoObj 1, which has the program ID:

RSI DenmoComnponent . RSI DenpoOhj 1
and the class ID:
{ A77BC2B2- 88EC- 4D2A- B2B3- F556 ACB52E52}

Example Code
The following section develops an IDL procedure called | DispatchDemo that
illustrates use of the RSIDemoComponent. The complete. pr o fileisincluded in
the exanpl es\ doc\ bri dges\ COMsubdirectory of the IDL distribution as
| Di spat chDeno. pro.

1. Begin by creating an IDLcoml Dispatch object from the COM object. You can
use either the class ID or the program ID. Remember that if you use the class
ID, you must remove the braces ({ }) and replace the hyphens with
underscores.

obj1 = OBJ_NEW $
' | DLCOM Di spat ch$PROQ D$RSI DenpConponent _RSI DenoChj 1')

or (with Class ID):

obj1 = OBJ_NEW $
' | DLCOM D spat ch$CLSI DSA77BC2B2_88EC 4D2A B2B3_F556ACB52E52')
2. The COM object implements the Get CLSI D method, which returns the class
ID for the component. You can retrieve thisvaluein and IDL variable and
print it. The string should be' { A77BC2B2- 88EC- 4D2A- B2B3-
F556 ACB52E52} ' .

Example: RSIDemoComponent IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/COM/IDispatchDemo.pro

Chapter 3: Using COM Obijects in IDL 47

strCLSID = obj 1- >Get CLSI IX()
PRI NT, strCLSID

Note
The GetCL SID method returns the class identifier of the object using the
standard COM separators (-).

3. The COM object has a property named MessageSt r . To retrieve the value of
the MessageSt r property, enter:

obj1l -> GetProperty, MessageStr = out Str
PRI NT, outStr

IDL should print* RSl DenoCbj 1' .

4. You can aso set the MessageSt r property of the object and display it using
the object’'s Di spl ayMessageSt r method, which displays the value of the
MessageSt r property in aWindows dialog:

obj1l -> SetProperty, MessageStr = 'Hello, world'
obj1 -> DisplayMessageStr

5. TheMsg2l nPar ans method takes two input parameters and concatenates
them into a single string. Executing the following commands should cause IDL
toprint' The val ue is: 25'.

instr = 'The val ue is:

val = 25L

out Str = obj 1- >Msg2l nParans(instr, val)
PRI NT, outStr

6. Toview al known information about the IDLcoml Dispatch object, including
its dynamic subclass name and the names of its methods, use the IDL HELP
command with the OBJECTS keyword:

HELP, obj1, /OBJECTS

7. TheGet | ndexObj ect () method returns an object reference to one of the
following three possible objects:

* RSl DenpObj 1 (index =1)
* RSI DenpObj 2 (index = 2)
e RSI DenoObj 3 (index = 3)

Note
If theindex isnot 1, 2, or 3, the Get | ndex(hj ect method will return an
error.

IDL Connectivity Bridges Example: RSIDemoComponent

48

Chapter 3: Using COM Objects in IDL

To get areference to RSI DenpObj 3, use the following command:
obj 3 = obj 1- >Get | ndexObj ect (3)

8. All three objects have the Get CLSI D method. You can use this method to
verify that the desired object was returned. The output of the following
commands should be '{ 13AB135D- A361- 4A14- B165- 785B03AB5023} ' .

obj 3CLSI D = obj 3- >Get CLSI ()
PRI NT, obj 3CLSI D

9. Remember to destroy aretrieved object when you are finished with it:
OBJ_DESTROY, obj 3

10. Next, usethe COM object’s Get Arr ayf Chj ect s() method to return a
vector of object referencesto RSI DenoObj 1, RSI DenoOoj 2, and
RSI DenoQhbj 3, respectively. The number of elementsin the vector is returned
in the first parameter; the result should 3.
obj s = obj 1->CGet ArrayOr Cbj ect s(cltens)
PRI NT, cltens

11. Since each object implements the Get CLSI D method, you could loop through
al the object references and get its class ID:

FORi =0, cltens-1 do begin

obj CLSID = objs[i] -> GetCLSI)

PRI NT, 'Object[',i,'] CLSID: ', objCLSID
ENDFOR

12. Remember to destroy object references when you are finished with them:

OBJ_DESTROY, objs
OBJ_DESTROY, obj 1

Example: RSIDemoComponent IDL Connectivity Bridges

Chapter 4

Using ActiveX Controls

In IDL

This chapter discusses the following topics:

About Using ActiveX ControlsinIDL50
ActiveX Control Naming Scheme 52
Method Calls on ActiveX Controls 55

Managing ActiveX Control Properties 56

IDL Connectivity Bridges

ActiveX Widget Events 57
Destroying ActiveX Controls 60
Example: Calendar Control 61
Example: Spreadsheet Control 64

49

50 Chapter 4: Using ActiveX Controls in IDL

About Using ActiveX Controls in IDL

If you want to incorporate a COM object that presents a user interface (that is, an
ActiveX control) into your IDL application, use IDL's WIDGET_ACTIVEX routine
to place the control in an IDL widget hierarchy. IDL provides the same object method
and property manipulation facilities for ActiveX controls asit does for COM objects
incorporated using the IDL coml Dispatch abject interface, but adds the ability to
process events generated by the ActiveX control using IDL’s widget event handling
mechanisms.

Note
IDL can only incorporate ActiveX controls on Windows 2000/XP (and later)
platforms. See “Feature Support by Operating System” in the What’s New in IDL
6.3 manual for details.

When you use the WIDGET_ACTIVEX routine, IDL automatically creates an
IDLcomActiveX object that encapsulates the ActiveX control. IDLcomActiveX
objects are a subclass of the IDLcoml Dispatch object class, and share all of the

I DL coml Dispatch methods and mechanisms discussed in Chapter 3, “Using COM
Objectsin IDL". You should be familiar with the material in that chapter before
attempting to incorporate ActiveX controlsin your IDL programs.

Note
If the COM object you want to use in your IDL application is not an ActiveX
control, use the IDL coml Dispatch object class.

Warning: Modeless Dialogs

When displaying an ActiveX form or dialog box, it is the responsibility of the COM
object to pump messages. Modal dialogs pump messages themselves, but model ess
dialogsdo not. IDL's COM subsystem does not provide the ability to pump messages
explicitly, giving IDL no way to pump messages while amodeless dialog is
displayed. Asaresult, calling amodeless dialog from IDL will result in an error.

Registering COM Components on a Windows
Machine

Before a COM object or ActiveX control can be used by aclient program, it must be
registered on the Windows machine. In most cases, components are registered by the
program that installs them on the machine. If you are using a component that is not

About Using ActiveX Controls in IDL IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 51

installed by an installation program that handles the registration, you can register the
component manually. For a description of the registration process, see “ Registering
COM Components on a Windows Machine” on page 23.

IDL Connectivity Bridges About Using ActiveX Controls in IDL

52 Chapter 4: Using ActiveX Controls in IDL

ActiveX Control Naming Scheme

When you incorporate an ActiveX control into an IDL widget hierarchy using the
WIDGET_ACTIVEX routine, IDL automatically creates an IDLcomActiveX object
that instantiates the control and handles all communication between it and IDL. You
tell IDL which ActiveX control to instantiate by passing the COM class or program
ID for the ActiveX control to the WIDGET_ACTIVEX routine as a parameter.

IDL automatically creates a dynamic subclass of the IDLcomActiveX class (whichis
itself a subclass of the IDL comliDispatch class) to contain the ActiveX control. The
resulting class name looks like

| DLcomAct i veX$l D_t ype$l D
where ID_type is one of the following:
e CLSI Dif the object isidentified by its COM class ID
e PROG Dif the object isidentified by its COM program I1D
and 1D isthe COM object’s actual class or program identifier string.

For more on COM class and program IDs see “ Class |dentifiers’ on page 24 and
“Program Identifiers’ on page 25.

While you will never need to use this dynamic class name directly, you may seeit
reported by IDL viathe HELP routine or in error messages. Note that when IDL
reports the name of the dynamic subclass, it will replace the hyphen charactersin a
class ID and the dot charactersin a program ID with underscore characters. Thisis
because neither the hyphen nor the dot character are valid in IDL object names.

Finding COM Class and Program IDs

In general, if you wish to incorporate an ActiveX object into an IDL widget
hierarchy, you will know the COM class or program ID, either because you created
the control yourself or because the devel oper of the control provided you with the
information.

If you do now know the class or program ID for the COM object you want to use, you
may be able to determine them using the OLE/COM Object Viewer application
provided by Microsoft. For more information, see“Finding COM Class and Program
IDS’ on page 26.

ActiveX Control Naming Scheme IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 53

Creating ActiveX Controls

To include an ActiveX control in an IDL application, use the WIDGET_ACTIVEX
function, supplying the COM class or program ID of the ActiveX control asthe
COM _ID argument.

Note
If the object you want to use in your IDL application is not an ActiveX control, use
the IDLcoml Dispatch object class as described in Chapter 3, “Using COM Objects
in IDL”. Instantiating a non-ActiveX component using the WIDGET_ACTIVEX
function is not supported, and may lead to unpredictable results.

Once the ActiveX object has been instantiated within an IDL widget hierarchy, you
can cal the control’s native methods as described in “Method Calls on ActiveX
Controls’ on page 55, and access or modify its properties as described in “Managing
ActiveX Control Properties” on page 56. IDL widget events generated by the control
are discussed in “ActiveX Widget Events’ on page 57.

For example, suppose you wished to include an ActiveX control with the class ID:
{ 0002E510- 0000- 0000- CO00- 000000000046}

and the program ID:
ONC. Spr eadsheet. 9

inan IDL widget hierarchy. Use either of the following calls the
WIDGET_ACTIVEX function:

WAX = W DGET_ACTI VEX(wBase, $
' 0002E510- 0000- 0000- CO00- 000000000046")

or
WAX = W DGET_ACTI VEX(wBase, ' OAC. Spreadsheet.9', | D TYPE=1)

where wBase isthe widget ID of the base widget that will contain the ActiveX
control.

Note
When instantiating an ActiveX control using the WIDGET_ACTIVEX function,
you do not need to modify the class or program ID as you do when creating an
IDLcomliDispatch object using the OBJ_NEW function. Be aware, however, that
when IDL creates the underlying IDLcomActiveX object, the dynamic class name
will replace the hyphens from a class ID or the dots from a program ID with
underscore characters.

IDL Connectivity Bridges Creating ActiveX Controls

54 Chapter 4: Using ActiveX Controls in IDL

IDL’sinternal COM subsystem instantiates the ActiveX control within an
IDLcomActiveX object with one of the following dynamic class names

| DLconmAct i veX$CLSI DS0002E510_0000_0000_C000_000000000046
or
| DLcomAct i veX$PROG DSONC_Spr eadsheet _9

and sets up communication between the object and IDL. IDL also places the control
into the specified widget hierarchy and prepares to accept widget events generated by
the control.

See“WIDGET_ACTIVEX” inthe IDL Reference Guide manual for additional
details.

Creating ActiveX Controls IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 55

Method Calls on ActiveX Controls

IDL allowsyou to call the underlying ActiveX control’s methods by calling methods
on the IDLcomActiveX object that is automatically created when you call the
WIDGET_ACTIVEX function. IDL handles conversion between IDL datatypes and
the data types used by the component, and any resultsare returned in IDL variables of
the appropriate type. Aswith all IDL objects, the genera syntax is:

result = Obj Ref ->Met hod([Argunent s])

or
bj Ref -> Method[, Argunents]

where Obj Ref isan object reference to an instance of a dynamic subclass of the
IDLcomActiveX class.

The IDLcomActiveX object classis adirect subclass of the IDLcomlDispatch object
class and provides none of its own methods. As aresult, method calls on
IDLcomActiveX objects follow the same rules as calls on IDLcoml Dispatch objects.
You should read and understand “Method Calls on IDLcoml Dispatch Objects’ on
page 29 before calling an ActiveX control’s methods.

Retrieving the Object Reference

Unlike IDLcoml Dispatch objects, which you create explicitly with a call to the
OBJ_NEW function, IDLcomActiveX objects are created automatically by IDL. To
obtain an object reference to the automatically created IDLcomActiveX object, use
the GET_VALUE keyword to the WIDGET_CONTROL procedure.

For example, consider the following lines of IDL code:

wBase = W DGET_BASE()

WAXx = W DGET_ACTI VEX(wBase, 'myProgram myConponent.1', |D TYPE=1)
W DGET_CONTROL, wBase, /REALIZE

W DGET_CONTROL, wWAX, GET_VALUE=0AX

Thefirst line creates a base widget that will hold the ActiveX control. The second
line instantiates the ActiveX control using its program ID and creates an
IDLcomActiveX object. The third line realizes the base widget and the ActiveX
control it contains; note that the ActiveX widget must be realized before you can
retrieve areference to the IDLcomActiveX object. The fourth line uses the
WIDGET_CONTROL procedure to retrieve an object reference to the
IDLcomActiveX object in the variable oAx. You can use this object reference to call
the ActiveX control’s methods and set its properties.

IDL Connectivity Bridges Method Calls on ActiveX Controls

56 Chapter 4: Using ActiveX Controls in IDL

Managing ActiveX Control Properties

As aconvenience to the IDL programmer, ActiveX control methods that have been
defined using the pr opget and pr opput attributes are accessible viathe
IDLcomActiveX object’s GetProperty and SetProperty methods, which are inherited
directly from the | DL comlIDispatch object class. This means that rather than calling
the ActiveX control’s methods directly to get and set property values, you use the
standard IDL syntax.

The IDLcomActiveX object classis adirect subclass of the IDLcomlDispatch object
class and provides none of its own methods. As aresult, IDL’sfacilities for managing
the properties of ActiveX controlsfollow the same rules as for IDL.comiDispatch
objects. You should read and understand “Managing COM Object Properties’ on
page 37 before working with an ActiveX control’s properties.

Managing ActiveX Control Properties IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 57

ActiveX Widget Events

Events generated by an ActiveX control are dispatched using the standard IDL
widget methodology. When an ActiveX event is passed into IDL, it is packaged in an
anonymous IDL structure that contains the ActiveX event parameters.

While the actual structure of an event generated by an ActiveX control will depend
on the control itself, the following gives an idea of the structure’s format:

{ID . OL,

TOP . 0L,

HANDLER . 0L,

DI SPI D : OL, ; The DI SPID of the call back method
EVENT_NAME : "", ; The name of the callback nethod
<Paraml nanme> : <Paraml val ue>,
<Par an? nanme> : <Paran? val ue>,
<Par amN nanme> : <ParanmN val ue>

}

Aswith other IDL Widget event structures, the first three fields are standard. ID is
the widget id of the widget generating the event, TOP isthe widget ID of thetop level
widget containing ID, and HANDLER contains the widget ID of the widget
associated with the handler routine.

The DISPID field contains the decimal representation of the dispatch ID (or DISPID)
of the method that was called. Note that in the OLE/COM Object Viewer, this 1D
number is presented as a hexadecimal number. Other applications (Microsoft Visual
Studio among them) may display the decimal representation.

The EVENT_NAME field contains the name of the method that was called.

The Param name fields contain the values of parameters returned by the called
method. The actual parameter name or names displayed, if any, depend on the
method being called by the ActiveX control.

Using the ActiveX Widget Event Structure

Since the widget event structure generated by an ActiveX control depends on the
method that generated the event, it isimportant to check the type of event before
processing valuesin IDL. Successfully parsing the event structure requires a detailed
understanding of the dispatch interface of the ActiveX control; you must know either
the DISPID or the method name of the method, and you must know the names and
data types of the values returned.

IDL Connectivity Bridges ActiveX Widget Events

58 Chapter 4: Using ActiveX Controls in IDL

For example, suppose the ActiveX control you are incorporating into your | DL
application includes two methods named Met hod1 and Met hod2 in adispatch
interface that looks like this:

di spinterface MyDisplnterface {
properties:
nmet hods:
[i d(0x00000270)]
voi d Met hodl([in] Eventlnfo* Eventlnfo);
[d(0x00000272)]
HRESULT Met hod2([out, retval] BSTR* EditData);
b
A widget event generated by acall to Met hod1, which has no return values, would
look something like:

** Structure <3fb7288>, 5 tags, |ength=32, data | ength=32:

1D LONG 13
TCOP LONG 12
HANDLER LONG 12
DI SPI D LONG 624
EVENT_NAME STRI NG " Met hod1'

Note that the DISPID is 624, the decimal equivalent of 270 hexadecimal.

A widget event generated by acall to Met hod2, which has one return value, would
look something like:

** Structure <3fb7288>, 6 tags, |ength=32, data | ength=32:

1D LONG 13

TOP LONG 12

HANDLER LONG 12

DI SPI D LONG 626
EVENT_NAME STRI NG ' Met hod2'

EDI TDATA STRI NG 'sone text val ue'

An DL event-handler routine could use the value of the DISPID field to check which
of these two ActiveX control methods generated the event before attempting to use
the value of the EDITDATA field:

PRO nyRouti ne_event, event
| F(event. Dl SPID eq 626) THEN BEG N
PRI NT, event. EDI TDATA
ENDI F ELSE BEG N
<do sonet hi ng el se>
ENDEL SE
END

ActiveX Widget Events IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 59

Dynamic Elements in the ActiveX Event Structure

Parameter data included in an event structure generated by an ActiveX control can
take the form of an array. If this happens, the array is placed in an IDL pointer, and
the pointer, rather than the array itself, isincluded in the IDL event structure.
Similarly, an ActiveX control may return areference to another COM aobject, as
described in “References to Other COM Objects’ on page 42, in its event structure.

IDL pointers and objects created in this way are not automatically removed; it is the
IDL programmer’s responsibility free them using aroutine such as PTR_FREE,
HEAP_FREE, or OBJ DESTROY.

If it isunclear whether the event structure will contain dynamic elements (objects or
pointers) it is best to pass the ActiveX event structure to the HEAP_FREE routine
when your event-handler routine has finished with the event. Thiswill ensure that all
dynamic portions of the structure are released.

IDL Connectivity Bridges ActiveX Widget Events

60 Chapter 4: Using ActiveX Controls in IDL

Destroying ActiveX Controls

An ActiveX control incorporated in an IDL widget hierarchy is destroyed when any
of the following occurs:

* When the widget hierarchy to which the ActiveX widget belongs is destroyed.

* Whenacall to WIDGET_CONTROL, wAX, /DESTROY is made, where wAX
isthe widget ID of the ActiveX widget.

e When the underlying IDLcomActiveX object is destroyed by acall to
OBJ DESTROY.

In most cases, cleanup of an application that includes an ActiveX control is not
different from an application using only IDL native widgets. However, becauseit is
possible for an ActiveX control to return references to other COM objectsto IDL,
you must be sure to keep track of all objects created by your application and destroy
them as necessary. See “References to Other COM Objects’ on page 42 for details.

In addition, it is possible for the widget event structure generated by an ActiveX
control to include IDL pointers or object references. Pointers and object references
included in the event structure are not automatically destroyed. See “Dynamic
Elementsin the ActiveX Event Structure” on page 59 for more information.

Destroying ActiveX Controls IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 61

Example: Calendar Control

This example uses an ActiveX control that displays a calendar interface. The control,
contained inthefilenscal . ocx, isinstalled along with atypical installation of
Microsoft Office 97, and may also be present on your system if you have upgraded to
amore recent version of Microsoft Office. If the control is not present on your system
(you'll know the control is not present if the example code does not display a
calendar similar to the one shown in Figure 4-1 on page 63), you can download a the
control as part of a package of sample ActiveX controlsincluded in thefile

act xsanp. exe, discussed in Microsoft Knowledge Base Article 165437.

If you download the control, place thefilenscal . exe in aknown location and
execute the file; you will be prompted for adirectory in which to place nscal . ocx.
Open a command prompt window in the directory you chose and register the control
as described in “ Registering COM Components on a Windows Maching” on page 23.

The calendar control has the program ID:
MBCAL. Cal endar . 7
and the class ID:
{ 8E27C92B- 1264- 101C- 8A2F- 040224009002}

Example Code
The following section develops an IDL routine called ActiveX Cal that illustrates
use of the calendar ActiveX control within an IDL widget hierarchy. The complete
. pro fileisincluded in the exanpl es\ doc\ bri dges\ COMsubdirectory of the
IDL distribution as Act i veXCal . pro.

1. Createthe ActiveXCal procedure. (Remember that inthe Act i veXCal . pro
file, this procedure occurs last.)

PRO Act i veXcCal
2. Create atop-level base widget to hold the ActiveX control.

wBase = W DGET_BASE(COLUWMN = 1, SCR XSl ZE = 400, $
TITLE=" I DL ActiveX Wdget Cal endar Control')

3. Create base widgets to hold labels for the selected month, day, and year. Set
theinitial values of the labels.

wSubBase = W DGET_BASE(wBase, / ROW
wMoi d = W DGET_LABEL(wSubBase, value = 'Mnth: ')
wihbnt h = W DGET_LABEL(wSubBase, val ue = ' Cctober')

IDL Connectivity Bridges Example: Calendar Control

RSI_PROCODE/examples/doc/bridges/COM/ActiveXCal.pro

62

10.

11.

Chapter 4: Using ActiveX Controls in IDL

wSubBase = W DGET_BASE(wBase, /ROWN
wVoi d = W DCGET_LABEL(wSubBase, VALUE = 'Day: ')
wDay = W DCGET_LABEL(wSubBase, VALUE = '22'")
wSubBase = W DGET_BASE(wBase, / ROWN
wVoi d = W DGET_LABEL(wSubBase, VALUE
wyear = W DGET_LABEL(wSubBase, VALUE

"Year: ')
'1999')

Instantiate the ActiveX Control, using the control’s class ID.

wAX=W DGET_ACTI VEX(wBase, $
' {8E27C92B- 1264- 101C- 8A2F- 040224009002} ')

Realize the top-level base widget.
W DGET_CONTROL, wBase, / REALIZE

Set the top-level base's user value to an anonymous structure containing
widget IDs of the month, day, and year |abel widgets.

W DGET_CONTROL, wBase, $

SET_UWVALUE = {nont h: wwbnt h, day: wDay, year: wYear}

Retrieve the object ID of the IDLcomALctiveX object that encapsulates the
ActiveX control. Use the GetProperty method to retrieve the current values of
the month, day, and year from the control.

W DGET_CONTROL, WAX, GET_VALUE = 0AXx

0AXx- >Cet Property, nonth=nonth, day=day, year=year
Set the values of the label widgetsto reflect the current date, asreported by the
ActiveX control.

W DGET_CONTROL, wMonth, SET_VALUE=STRTRI M nont h, 2)

W DGET_CONTROL, wDay, SET_VALUE=STRTRI M day, 2)
W DGET_CONTROL, wYear, SET_VALUE=STRTRI Myear, 2)

Call XMANAGER to manage the widget events, and end the procedure.
XMANAGER, ' ActiveXCal', wBase

END

Now create an event-handling routine for the calendar control. (Remember that
inthe Act i veXCal . pr o file, this procedure occurs before the ActiveX Cal
procedure.)

PRO Acti veXCal _event, ev

The ActiveX widget isthe only widget in this application that generates widget
events, so the ID field of the event structure is guaranteed to contain the widget
ID of that widget. Use the GET_VALUE keyword to retrieve an object
reference to the IDLcomActiveX object that encapsulates the control.

Example: Calendar Control IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 63

W DGET_CONTROL, ev.|D, CGET_VALUE = oCal

12. The user value of the top-level base widget is an anonymous structure that
holds the widget I Ds of the month, day, and year |abel widgets (see step 6
above). Retrieve the structure into a variable named st at e.

W DGET_CONTROL, ev. TOP, GET_WWALUE = state

13. Use the GetProperty method on the IDLcomActiveX object to retrieve the
current values of the month, day, and year from the calendar control.

ocal - >Get Property, nonth=nonth, day=day, year=year

14. Use WIDGET_CONTROL to set the values of the month, day, and year 1abel
widgets.

W DGET_CONTROL, state.nmonth, SET_VALUE = STRTRI M nont h, 2)
W DGET_CONTROL, state.day, SET_VALUE = STRTRI M day, 2)
W DGET_CONTROL, state.year, SET_VALUE = STRTRI M year, 2)

15. Call HEAP_FREE to ensure that dynamic portions of the event structure are
released, and end the procedure.

HEAP_FREE, ev

END
Running the ActiveX Cal procedure displays awidget that looks like the following:

#l/IDL ActiveX Widget Calendar Control i I] 54
tanth; &
Daw: 1
Year 2002
May 2002 May =] |2002 =l
Sun Mon Tue Wed Thu Fri Sat

28 28 a0 2 3 4

& 53 it g 9 10 11

12 13 14 15 16 17 15

19 20 21 22 23 24 25

26 7 28 28 30 1 1

2 i 4 & G [g

Figure 4-1: An IDL widget program Using an ActiveX Calendar Control

IDL Connectivity Bridges Example: Calendar Control

64 Chapter 4: Using ActiveX Controls in IDL

Example: Spreadsheet Control

This example uses an ActiveX control that displays a spreadsheet interface. The
control, contained inthe filensowc. dl | , isinstalled aong with atypical installation
of Microsoft Office. If the control is not present on your system (you'll know the
control is not present if the example code fails when trying to realize the widget
hierarchy), the example will not run.

The spreadsheet control has the program ID:
ONC. Spr eadsheet. 9
and the class ID:
{ 0002E510- 0000- 0000- CO00- 000000000046}

Information about the spreadsheet control’s properties and methods was gleaned
from Microsoft Excel 97 Visual Basic Sep by Step by Reed Jacobson (Microsoft
Press, 1997) and by inspection of the control’s interface using the OLE/COM Object
Viewer application provided by Microsoft. It is beyond the scope of this manual to
describe the spreadsheet control’s interface in detail.

Example Code
The following section develops an IDL routine called ActiveXExcel that illustrates
use of the spreadsheet ActiveX control within an IDL widget hierarchy. The
complete. pro fileisincluded intheexanpl es\ doc\ bri dges\ COMsubdirectory
of the IDL distribution as Act i veXExcel . pro.

1. Create afunction that will retrieve datafrom cells selected in the spreadsheet
control. The function takes two arguments: an object reference to the
IDLcomActiveX object that instantiates the spreadsheet control, and avariable
to contain the data from the selected cells.

FUNCTI ON excel _get Sel ecti on, oExcel, aData

2. Retrieve an object that represents the selected cells. Note that when the
ActiveX control returnsthis object, IDL automatically creates an
IDLcomActiveX object that makes it accessible within IDL.

oExcel - >CGet Property, SELECTI ON=0Sel
3. Retrievethe total number of cells selected.
oSel - >Get Property, COUNT=nCel | s

4. 1f no cells are selected, destroy the selection object and return zero (the failure
code).

Example: Spreadsheet Control IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/COM/ActiveXExcel.pro

Chapter 4: Using ActiveX Controls in IDL

10.

11.

12.

65

IF (nCells LT 1) THEN BEG N
OBJ_DESTROY, o0Sel
RETURN, 0

ENDI F

Retrieve objects that represent the dimensions of the selection.
o0Sel - >Get Property, COLUWS=0Col s, ROAS=0Rows
Get the dimensions of the selection, then destroy the column and row objects.

oCol s->Get Property, COUNT=nCol s
OBJ_DESTROY, o0Col s
oRows- >Get Property, COUNT=nRows
OBJ_DESTROY, oRows

Create afloating point array with the same dimensions as the selection.
abata = FLTARR(nCol s, nRows, /NOZERO);
Iterate through the cells, doing the following:

* Retrieve an object that represents the cell. Note that the numeric index of
the FOR loop is passed to the GetProperty method as an argument.

* Get the value contained in the cell.
* Set the appropriate element of the aData array to the cell's value.
e Destroy the object.

FOR i=1, nCells DO BEG N
oSel - >Get Property, | TEM=oltem i
ol tem >Get Property, VALUE=vVal ue
abata[i-1] = vVal ue
OBJ_DESTROY, oltem

ENDFOR

Destroy the selection object.
OBJ_DESTROY, o0Sel

Return one (the success code) and end the function definition.
RETURN, 1

END

Next, create a procedure that sets the values of the cellsin the spreadsheet.
This procedure takes one argument: an object reference to the
IDLcomActiveX object that instantiates the spreadsheet control.

PRO excel _set Data, oExcel

Define the size of the data array.

IDL Connectivity Bridges Example: Spreadsheet Control

66

13.

14.

15.

16.

17.

18.

19.

20.

Chapter 4: Using ActiveX Controls in IDL

nX = 20
Get an object representing the active spreadshest.
oExcel - >Get Property, ActiveSheet=0Sheet
Get an object representing the cells in the spreadsheet.
oSheet - >Get Property, CELLS=0Cells
Generate some data.
i m= BESELJ(DI ST(nX))
Iterate through the elements of the data array, doing the following:

* Retrieve an object that represents the cell that corresponds to the data
element. Note that the numeric indices of the FOR loops are passed to the
GetProperty method as arguments.

¢ Set the value of the cell.

e Destroy the object.

FOR i =0, nX-1 DO BEG N
FOR j=0, nX-1 DO BEG N
0Cel | s->CetProperty, |ITEM-oltem i+1, j+1
ol tem >Set Property, VALUE=in(i,]j)
OBJ_DESTROY, oltem
ENDFOR
ENDFOR

Destroy the spreadsheet and cell objects, and end the procedure.

OBJ_DESTROY, oSheet
OBJ_DESTROY, oCells

END
Next, create a procedure to handle events generated by the widget application.
PRO Acti veXExcel _event, ev

The user value of the top-level base widget is set equal to a structure that
contains the widget ID of the ActiveX widget. Retrieve the structure into the
variable sState.

W DGET_CONTROL, ev. TOP, GET_WWALUE=sState, /NO COPY

Use the value of the DISPID field of the event structure to sort out “ selection
changing” events.

IF (ev.D SPID EQ 1513) THEN BEG N

Example: Spreadsheet Control IDL Connectivity Bridges

Chapter 4: Using ActiveX Controls in IDL 67

21.

22.

23.

24,

25.

26.

27.

28.

29.

Place data from selected cellsin variable aData, using the
excel _get Sel ect i on function defined above. Check to make sure that the
function returns a success value (one) before proceeding.

I F (excel _get Sel ection(sState. oExcel, aData) NE 0) THEN BEG N
Get the dimensions of the aData variable.
szData = Sl ZE(aDat a)
If aDataistwo-dimensional, display a surface, otherwise, plot the data.

IF (szData[0] GI 1 AND szData[1l] GI 1 AND szData[2] GI 1) $
THEN SURFACE, aData $
ELSE $
PLOT, abDat a
ENDI F

ENDI F

Reset the state variable sState and end the procedure.
W DGET_CONTROL, ev. TOP, SET_WVALUE=sState, /NO _COPY

END
Create the main widget creation routine.
PRO Acti veXExcel

I EXCEPT=0 ; lgnore floating-point underflow errors.
Create atop-level base widget.

wBase = W DGET_BASE(COLUMNEL, $
TITLE="I DL ActiveX Spreadsheet Exanple")

Instantiate the ActiveX spreadsheet control in awidget.

WAX=W DGET_ACTI VEX(wBase, $
' {0002E510- 0000- 0000- CO00- 000000000046} ', $
SCR_XSI ZE=600, SCR_YSI ZE=400)

Realize the widget hierarchy.
W DGET_CONTROL, wBase, /REALIZE

The value of an ActiveX widget is an object reference to the IDLcomA ctiveX
object that encapsulates the ActiveX control. Retrieve the object referencein
the variable oExcd.

W DCGET_CONTROL, WAx, GET_VALUE=oExcel

IDL Connectivity Bridges Example: Spreadsheet Control

68

30.

31

32.

33.

Chapter 4: Using ActiveX Controls in IDL

Turn off the TitleBar property on the spreadsheet control.
oExcel - >Set Property, DisplayTitleBar=0

Populate the spreadsheet control with data, using the excel _set Dat a
function defined above.

excel _setData, oExcel

Set the user value of the top-level base widget to an anonymous structure that
contains the widget ID of the spreadsheet ActiveX widget.

W DGET_CONTROL, wBase, SET_UVALUE={oExcel : oExcel }
Cal XMANAGER to manage the widgets, and end the procedure.

XMANAGER, ' Acti veXExcel ', wBase, /NO _BLOCK
END

Running the ActiveX Excel procedure display widgets that 1ook like the following:

al
B &8 = [HEEY ED

1
2
3
4
5
B
T
8

"
12
13
14
15
16
17
18
19
20
i

i -0l x|

A B c D E F
0.765198) 0.223891 -0.260052 -0.39715 -0.17:
0785198 0.559134 0.090405 -0.310045 -0.386187 -0.14+
0.223891 0.090405 0196548 -0.392293 -0.326875 -0.04¢
-0.260052 -0.310045 -0.392293 -0.370336 0177597 0.10°
039715 0.386167 -0.326075 0177597 004583 0.24
0177597 0144665 -0 046336 0101258 0243877 0.29¢
0.150645 | 0.1728458 0226044 0285837 029445 0.217
0.300079 0299655 0289804 0249062 0156777 0.012
0171651 086777 0.1102 0.029915 -0.076487 0182
-0.080334 0103734 -0.140967 -0 191787 -0.236522 -0.24
0245936 0.247792 024963 -0.240943 -0.207336 -0.13¢
-0.080334 01053734 -0.140967 -0.131767 -0.236522 -0.24
0171651 086777 0.1102 0.029915 -0.076487 0182
0.300079 0299655 0289804 0249052 0156777 0.012
0.150645 | 0.172848 0226844 0285837 029445 0.217
0177597 0144665 -0.045336 0101258 0243877 0.29¢
039715 -0.386767 0326875 0177597 004583 0.24
-0.260052 -0.310045 -0.392293 -0.370336 0177597 0.10°

0.223891 0.090405 -0.1965458 -0.392293 -0.326875 -0.04 = = =
0.765198 0.559134 0.080405 -0.310045 -0.386187 -0.144665 0.172843 0.299655 0.155
| ;IJ

Figure 4-2: An IDL Widget Program Using an ActiveX Spreadsheet Control

Example: Spreadsheet Control IDL Connectivity Bridges

Chapter 5

Using Java Objects In

IDL

The following topics are covered in this chapter:

Overview of Using JavaObjects 70
Initializing the IDL-JavaBridge 73
IDL-Java Bridge Data Type Mapping 76
Creating IDL-JavaObjects 82
Method Callson IDL-JavaObjects 84
Managing |DL-Java Object Properties 86

IDL Connectivity Bridges

Destroying IDL-JavaObjects 88
Showing IDL-JavaOutput inIDL 89
The IDLJavaBridgeSession Object 90
JavaExceptions 92
IDL-JavaBridge Examples 95
Troubleshooting Your Bridge Session ... 113

69

70 Chapter 5: Using Java Objects in IDL

Overview of Using Java Objects

Javais an object-oriented programming language devel oped by Sun Microsystems
that is commonly used for web development and other programming needs. It is
beyond the scope of this chapter to describe Javain detail. Numerous third-party
books and electronic resources are available. The Java website (http://java.sun.com)
may be useful.

The IDL-Java bridge allows you to access Java objects within IDL code. Java objects
imported into IDL behave like normal IDL objects. See “ Creating IDL-Java Objects’
on page 82 for more information. The IDL-Java bridge allowsthe arrow operator (- >)
to be used to call the methods of these Java objects just as with other IDL objects, see
“Method Calls on IDL-Java Objects’ on page 84 for more information. The public
data members of a Java object are accessed through GetProperty and SetProperty
methods, see “Managing IDL-Java Object Properties’ on page 86 for more
information. These objects can a so be destroyed with the OBJ DESTROY routine,
see “Destroying IDL-Java Objects’ on page 88 for more information.

Note
IDL requires an evaluation or permanent IDL license to use this functionality. This
functionality is not available in demo mode.

The bridge also provides IDL with access to exceptions created by the underlying
Java object. Thisaccessis provided by the IDL JavaBridgeSession object, whichisa
Java object that maintains exceptions (errors) during a Java session, see “The

IDL JavaBridgeSession Object” on page 90 for more information.

Note
Visua Java objects cannot be embedded into IDL widgets.

Currently, the IDL-Java bridge is supported on the Windows, Linux, Solaris, IRIX,
and Macintosh platforms supported in IDL. See “Requirements for This Release” in
Chapter 3 of the What's New in IDL 6.3 manual for more information.

Note
On Solaris, there are potential problems creating graphical windows from the IDL-
Java bridge using Java versions before 1.5. We recommend using the X Toolkit
option, which the IDL-Java bridge will use by default.

Overview of Using Java Objects IDL Connectivity Bridges

http://java.sun.com

Chapter 5: Using Java Objects in IDL 71

Java Terminology

You should become familiar with the following terms before trying to understand
how IDL works with Java objects:

Java Mirtual Machine (JVM) - A software execution engine for executing the byte
codes in Java class files on a microprocessor.

Java Native Interface (JNI) - Standard programming interface for accessing Java
native methods and embedding the VM into native applications. For example, JNI
may be used to call C/C++ functionality from Javaor JNI can be used to call Java
from C/C++ programs.

Java Invocation API - An API by which one may embed the Java Virtual Machine
into your native application by linking the native application with the JVM shared
library.

Java Reflection API - Provides asmall, type-safe, and secure API that supports
introspection about the classes and objects. The API can be used to:

e Construct new class instances and new arrays
e Access and modify fields of objects and classes
* Invoke methods on objects and classes

e Access and modify elements of arrays
IDL-Java Bridge Architecture

The IDL-Java bridge uses the Java Native Interface (JNI), the reflection API, and the
JVM to enable the connection between IDL and the underlying Java system.

The IDL OBJ_NEW function can be used to create a Java object. A Java-specific
class token identifies the Java class used to create a Java proxy object. IDL parsesthis
class name and creates the desired object within the underlying Java environment.

The Java-specific token is a case-insensitive form of the name of the Java class.
Besides the token, the case-sensitive form of the name of the Javaclassis aso
provided because Javaitself is case-sensitive while IDL is not. IDL uses the case-
insensitive form to create the object definition while Java uses the case-sensitive
form.

After creation, the object can then be used and manipulated just like any other IDL
object. Method calls are the same as any other IDL object, but they are vectored off to
an IDL Java system, which will call the appropriate Java method using JNI.

IDL Connectivity Bridges Overview of Using Java Objects

72 Chapter 5: Using Java Objects in IDL

The OBJ DESTROY procedurein IDL is used to destroy the object. This process
releases the internal Java object and frees any resources associated with it.

Overview of Using Java Objects IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 73

Initializing the IDL-Java Bridge

The IDL-Java bridge must be configured before trying to create and use Java objects
within IDL. The IDL program initializes the bridge when it first attemptsto create an
instance of IDLjavaObject. Initializing the bridge involves starting the Java Virtual
Machine, creating any internal Java bridge objects (both C++ and Java) including the
internal | DL JavaBridgeSession object. See“ The IDL JavaBridgeSession Object” on
page 90 for more information on the session object.

Configuring the Bridge

The.idljavabrc fileon UNIX ori dl j avabr ¢ on Windows contains the IDL-
Java bridge configuration information. Even though the IDL installer attempts to
create avalid working configuration file based on IDL location, the file should be
verified before trying to create and use Java objects within IDL.

The IDL-Java bridge looks for the configuration file in the following order:

1. If the environment variable IDLJAVAB_CONFIG is set, thefileit indicatesis
used.

Note
This environment variable must include both the path and the file name of the
configuration file.

2. If theenvironment variable IDLJAVAB_CONFIG isnot set or thefileindicated
by that variable is not found in that location, the path specified in the HOME
environment variable is used to try to locate the configuration file.

3. If thefileis not found in the path indicated by the HOME environment
variable, the <IDL_DEFAULT>/ r esour ce/ bri dges/ i nport/j ava path
is used to try to locate the configuration file.

The configuration file contains the following settings. With atext editor, open your
configuration file to verify these settings are correct for your system.

e TheldVM O asspat h setting specifies additional locations for user classes. It
must point to the location of any class files to be used by the bridge. On
Windows, paths should be separated by semi-colons. On UNIX, colons should
separate paths.

This path may contain folders that contain class files or specific jar files. It
follows the same rules for specifying '-classpath’ when running j ava or

IDL Connectivity Bridges Initializing the IDL-Java Bridge

74 Chapter 5: Using Java Objects in IDL

j avac. You can also include the CLASSPATH environment variablein the
JVM C asspat h:

JVM d asspath = $CLASSPATH: / hone/ j ohnd/ nyCl asses. j ar

which allows any class defined in the CLASSPATH environment variable to be
used in the IDL-Java bridge.

On Windows, an example of atypical JVM Cl asspat h settingis:
JVM Cl asspath = E:\nyC asses. j ar; $CLASSPATH

On UNIX, an example of atypical JVM O asspat h setting is:
JVM O asspath = / hone/j ohnd/ nyCd asses. j ar : $CLASSPATH

e TheJVM LibLocat i on setting tells the Windows IDL-Java bridge which
JVM shared library within agiven Javaversion to use. Various versions of Java
ship with different types of VM libraries. For example, Java 1.3 on Windows
shipswith a“classic” VM, a*“hotspot” VM, and a*“server” VM. Other
versions and platforms have different VM types.

On Windows, an example of atypical JVM Li bLocat i on setting is:

JVM Li bLocation = E:\jdkl.3.1_02\jre\bin\hotspot

On UNIX, you should not set JVM Li bLocat i on inthe configuration file.
Instead, set the IDLJAVAB_LIB_LOCATION environment variable for the
session that will use the IDL-Java bridge. The following is atypical command
to set the environment variable:

SETENV | DLJAVAB_LI B_LOCATI ON
[usr/javalj2rel.4.0_02/1ib/sparc/client
Note
You can aso set the IDLJAVAB_LIB_LOCATION environment variable on
Windows platforms, rather than specifying the value in the configuration file.

Note
On Macintosh platforms, IDL is hard-coded to use the JavaVM 1.3.1, and so
the system ignores any value you placein IDLJAVAB_LIB_LOCATION.

e TheJVM Opti on# (where# is any whole number) setting allows you to send
additional parametersto the Java Virtual machine upon initialization. These
settings must be specified as string values. When these settings are
encountered in theinitialization, the options are added to the end of the options
that the bridge sets by default.

Initializing the IDL-Java Bridge IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 75

e Thelog Locati on setting indicates the directory where IDL-Java bridgelog
fileswill be created. The default location provided by the IDL installer is/ t np
on Unix and C: \ t enp on Windows.

 TheBridge Loggi ng setting indicates the type of bridge debug logging to be
sentto afilecalledj b_| og<pi d>. t xt (where<pi d> isaprocess|D
number) located in the directory specified by the Log Locat i on setting.

Acceptable values (from least verbose to most verbose) are SEVERE, CONFI G,
CONFI GFI NE. The default value is SEVERE, which specifies that bridge errors
are logged. The CONFI Gvaue indicates the configuration settings are also
logged. The CONFI GFI NE value is the same as CONFI G, but provides more
detail.

No log fileis created if this setting is set to OFF.

The IDL-Java bridge usually only uses the configuration file once during an IDL
session. Thefile is used when the first instance of the IDLjavaObject classis created
in the session. If you edit the configuration file after the first instance is created, you
must exit and restart IDL to update the IDL-Java bridge with the changes you made to
thefile.

IDL Connectivity Bridges Initializing the IDL-Java Bridge

76

Chapter 5: Using Java Objects in IDL

IDL-Java Bridge Data Type Mapping

When data moves between IDL and a Java object, IDL automatically converts

variable data types.

The following table maps how Java data types correlate to IDL data types.

Java Type (# bytes) IDL Type Notes

boolean (1) Integer True becomes 1,
false becomes 0

byte (1) Byte

char (2) Byte The bridge handles
Java UTF characters

short (2) Integer

int (4) Long

long (8) Long64

float (4) Float

double (8) Double

Java.lang.String String Java has the notion
of aNULL string
(the java.lang.String
reference equals
null) and the concept
of an empty string.
IDL makes no such
differentiation, so
both areidentically
converted.

Arrays of the above types IDL array of the same

dimensions (from 1 to
8 dimensions) and
corresponding type.

Table 5-1: Java to IDL Data Type Conversion

IDL-Java Bridge Data Type Mapping

IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL

77

Java Type (# bytes)

IDL Type

Notes

Java.lang.Object (or array of
javalang.Object) and any
subclass of java.lang.Object

IDL array of primitives
or IDL array of
IDLjavaObjects

In Java, everythingis
asubclass of Object.
If the Java object is
an array of
primitives, an IDL
array of the same
dimensions and
corresponding type
(shown in thistable)
iscreated. IDL
similarly converts
arrays of primitives,
arrays of strings,
arrays of other Java
objectsto an IDL
Java object of the
same dimensions. If
the Object is some
single Java object,
IDL createsan object
reference of the
IDLjavaObject class.

Null object

IDL Null object

Table 5-1: Java to IDL Data Type Conversion (Continued)

IDL Connectivity Bridges

IDL-Java Bridge Data Type Mapping

78 Chapter 5: Using Java Objects in IDL

The following table shows how data types are mapped from IDL to Java.

IDL Type Java Type (# bytes) Notes
Byte byte (1) IDL bytes range from 0 to 255,
Java bytes are-128 to 127. IDL
bytes converted to Java bytes

will retain their binary
representation but values greater
than 127 will change. For
example, BY TE(255) becomesa
Javabyteof -1. If BYTE is
converted to wider Java value,
the sign and value is preserved.

Integer short (2)

Unsigned integer short (2) IDL unsigned integers range
from 0O to 65535, Java shorts are
-32768 to 32767. IDL unsigned
integers converted to Java shorts
will retain their binary
representation but values greater
than 32768 will change. For
example, UINT(65535) becomes
aJavashort of -1. If UINT is
converted to wider Java value,
the sign and value is preserved.

Long int (4)

Table 5-2: IDL to Java Data Type Conversion

IDL-Java Bridge Data Type Mapping IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL

79

IDL Type

Java Type (# bytes)

Notes

Unsigned long

int (4)

IDL unsigned longs range from
0to 4294967295, Javaints are -
2147483648 to 2147483647.
IDL unsigned longs converted to
Javaints will retain their binary
representation but values greater
than 2147483647 will change.
For example,
ULONG(4294967295) becomes
aJavaint of -1. If ULONG is
converted to wider Java value,
the sign and value is preserved.

Long64

long (8)

Unsigned Long64

long (8)

IDL unsigned long64 rangefrom
0 to 18446744073709551615,
Javaints range from
-9223372036854775808 to
9223372036854775807. IDL
unsigned long64 converted to
Javalongswill retain their
binary representation values
greater than

9223372036854 775807 will
change. For example,

UL ONG64(1844674407370955
1615) becomes a Javalong of -1.

Float

float (4)

Double

double (8)

String

Java.lang.String

Arrays of the above
types

Java array of the same
dimensions and
corresponding type

Table 5-2: IDL to Java Data Type Conversion (Continued)

IDL Connectivity Bridges

IDL-Java Bridge Data Type Mapping

80 Chapter 5: Using Java Objects in IDL

IDL Type Java Type (# bytes) Notes
IDLjavaObject Object of corresponding
Javaclass

Arrays of objects Javaarray of the same Only objects of type
dimensions, consisting of | IDLjavaObject are converted.
corresponding Java proxy
objects

Null object Javanull

Table 5-2: IDL to Java Data Type Conversion (Continued)

When calling a Java method or constructor from IDL, the data parameters are
promoted as little as possible based on the signature of the given method. The
following table shows how data types are promoted within Javarelative to IDL.

Note
When strings and arrays are passed between IDL and Java, the array must be
copied. Depending upon the size of the array, this copy may be timeintensive. Care
should be taken to minimize array copying.

Java Type (to order of

IDL Type desired promotion) MBS
Byte byte, char, short, int, long,
float, double, boolean
Integer short, int, long, float, double,
boolean
Unsigned integer short, int, long, float, double,
boolean
Long int, long, float, double, boolean
Unsigned Long int, long, float, double, boolean
Long64 long, float, double, boolean

Unsigned Long64 | long, float, double, boolean

Table 5-3: Java Data Type Promotion Relative to IDL

IDL-Java Bridge Data Type Mapping IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 81

oLType | ammelooterst | ot
Float float, double
Double double
String Javalang.String
IDLjavaObject Java.lang.Object

Table 5-3: Java Data Type Promotion Relative to IDL (Continued)

IDL Connectivity Bridges IDL-Java Bridge Data Type Mapping

82 Chapter 5: Using Java Objects in IDL

Creating IDL-Java Objects

Aswith all IDL objects, a Java object is created using the IDL OBJ NEW function.
Keying off the provided Java class name, the underlying implementation usesthe IDL
Java subsystem to call the constructor on the desired Java object. The following line
of code demonstrates the basic syntax for calling OBJ_NEW to create a Java object

within IDL:
oJava = OBJ_NEW | DLj avaObj ect $JAVACLASSNAME, Javad assNane, $
[Argl, Arg2, ..., ArgN)

where JAVACLASSNAME is the class name token used by IDL to create the object,
JavaC assNane isthe class name used by Javato initialize the object, and Argl
through ArgN are any data parameters required by the constructor. See “Java Class
Namesin IDL” for more information.

Example Code
Seethehel | oj ava. pro fileinthe
resource/ bri dges/inport/javal exanpl es directory of the IDL distribution
for asimple example of an IDL-Java object creation.

Note
If you edit and recompile a Java class used by IDL during an IDL-Java bridge
session, you must first exit and restart IDL before your modified Java class will be
recognized by IDL.

The IDL-Java bridge also provides the ability to access static Java methods and data
members. See “Java Static Access’ on page 83 for more information.

Java Class Names in IDL

The underlying Javainterpreter recognizes the Java class name including all objects
contained within the Javainterpreter’s class path.

To identify a proper Java object, the fully-qualified package name should be used
when creating the IDL class name. For example, a class of type String would be
referredto asj ava. | ang. Stri ng.

Inthe IDL class name, the Java class separator (*.") should be replaced with an
underscore ('_"). If aJava class of type String were created, the following IDL
OBJ NEW call would be used:

0JString = OBJ_NEW' I DLJavaCbj ect $JAVA LANG STRING , $
‘java.lang. String', 'MW String')

Creating IDL-Java Objects IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 83

The class name is provided twice because IDL is case-insensitive whereas Javais
case-sensitive, see “1DL-Java Bridge Architecture” on page 71 for more information.

Note
IDL objects use method names (INIT and CLEANUP) to identify and call object

lifecycle methods. As such, these method names should be considered reserved. If
an underlying Java object implements a method using either INIT or CLEANUR,
those methods will be overridden by the IDL methods and not accessible from IDL.
In Java, you can wrap these methods with different named methods to work around
this limitation.

Java Static Access

In Java, a program can call a static method or access static data members on a Java
class without first having to create the object.

IDL contains a specia wrapper abject type for calling static methods. This IDL
object wrapper references the underlying Java class, allowing the object to call static
methods on the class or allowing the object to use the Get/Set Property callsto access
static data members. The following line of code demonstrates the basic syntax for
calling OBJ_NEW to create a static proxy within IDL:

oJava = OBJ_NEW I DLj avaObj ect $St at i c$JAVACLASSNAME, Javad assNane)

where JAVACLASNAME is the class name token used by IDL to create the object and
Javad assNane isthe class name used by Javato initialize the object. See “Java
ClassNamesin IDL” on page 82 for more information.

A special static object would not need to be created to call an instantiated
| DLJava(hj ect with static methods:

oNot Static = OBJ_NEW' | DLj avaQObj ect $JAVACLASSNAME' , $
' JavaCd assNane')
oNot Static -> aStaticMethod ; this is K

Example Code
Seethej avapr ops. pro fileinthe
resource/ bridges/inport/javal exanpl es directory of the IDL distribution
for an example of working with static data members.

Note
All restrictions on creating Java objects apply to this static object.

IDL Connectivity Bridges Creating IDL-Java Objects

84 Chapter 5: Using Java Objects in IDL

Method Calls on IDL-Java Objects

When amethod is called on a Java-based IDL object, the method name and
arguments are passed to the IDL-Java subsystem and the Java Reflection API to
construct and invoke the method call on the underlying object.

IDL handles conversion between IDL and Javadatatypes. Any resultsarereturnedin
IDL variables of the appropriate type.

Aswith all IDL objects, the general syntax in IDL for an underlying Java method that
returns a value (known as afunction method in IDL) is:

result = Obj Ref->Met hod([Argunents])

and the general syntax in IDL for an underlying Java method that does not return a
value, avoid method, (known as a procedure method in IDL) is:

hj Ref - >Met hod[, Argunent s]

where Obj Ref isan object reference to an instance of adynamic subclass of the
IDLjavaObject class.

Note
Besides other Java based objects, the value of an argument may be an IDL primitive
type, an IDLjavaObject, or an IDL primitive type array. No complex types
(structures, pointers, etc.) are supported as parameters to method calls.

What Happens When a Method Call Is Made?

When amethod is called on an instance of IDLjavaObject, IDL uses the method name
and arguments to construct the appropriate method calls for the underlying Java
object.

From the point of view of an IDL user issuing method calls on an instance of
IDLjavaObject, this process is completely transparent. IDL handles the translation
when the IDL user calls the Java object’s method.

Due to case-sensitivity incompatibilities between IDL and Java, Java's ability to
overload methods, and the fact that Java might promote certain data types, the Java
bridge uses an agorithm to match the IDL method name and parameters to the
corresponding Java object method.

Method Calls on IDL-Java Objects IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 85

Beforethe algorithm starts, IDL provides a case-insensitive <METHODNAME> and
areferenceto the Java object. For agiven object and its parent classes, the Java bridge
obtainsalist of al the public method names, including static methods. Thisalgorithm

performs the following steps:

1. If the Javaclass has one method name matching the IDL <METHODNAME>
(except for case insensitivity), this Java method name is used. At this point,
signatures and overloaded functions are not taken into account.

2. If the Javaclass has severa method namesthat differ only in caseand oneisall
uppercase, the uppercase name is used. Otherwise, the IDL-Java bridge issues
an error that it has no method named <METHODNAME>.

3. Once the method name has been determined, a promotion algorithm then
matches the Java data parameters as closely as possible with the IDL
parameters. Minimum data promotion from IDL to Javais preferred and only
widening promotion is allowed. If no match isfound, an error isissued.

Data Type Conversions

IDL and Java use different datatypes. IDL’'s dynamic type conversion facilities
handle all conversion of data types between IDL and the Java system. The data type
mappings are described in “IDL-Java Bridge Data Type Mapping” on page 76.

For example, if the Java object has a method that requires avalue of typei nt asan
input argument, IDL would supply the value asan IDL Long. For any other IDL data
type, IDL would first convert the value to an IDL Long using its normal data type
conversion mechanism before passing the value to the Java object asani nt .

IDL Connectivity Bridges Method Calls on IDL-Java Objects

86 Chapter 5: Using Java Objects in IDL

Managing IDL-Java Object Properties

Property names and arguments are also passed to the IDL Java subsystem and are
used in conjunction with the Java Reflection API to construct and access public data
members on the underlying object. These public data members (known as properties
in IDL) areidentified through arguments to the GetProperty and SetProperty
methods. See “ Getting and Setting Properties’ on page 87 for more information.

Note
Only public data members may be accessed.

Due to case-sensitivity incompatibilities between IDL and Java and the fact that Java
might promote certain data types, the Java bridge uses an algorithm to match the IDL
properties name to the corresponding Java object data members.

Before the algorithm starts, IDL provides a case-insensitive <PROPERTY NAME>
and areference to the Java object. For the given object and its parent classes, the Java
bridge obtains alist of all the public data membersincluding static members. This
algorithm performs the following steps:

1. If the Java class has one data member name matching the IDL
<PROPERTY NAME> (except for case insensitivity), this Java data member is
used. At this point, data types are not yet taken into account; this algorithm
only matches the data member names.

2. If the Java class has severa member names that differ only in case, the data
member name that exactly matches the IDL <PROPERTYNAME > (i.e. the
onethat isall caps) iscalled. Otherwise, the IDL-Java bridge issues an error
that the class has no data members named < PROPERTYNAME >.

3. When setting a property with the SetProperty method, a promotion algorithm
matches the provided IDL parameter with the Java data parameter as closely as
possible. If the IDL value can be promoted to the same type as the data
member, this data member is used. Otherwise, an error isissued.

When retrieving a property with the GetProperty method, this step is skipped
and the valueisreturned to IDL.

Example Code
Seetheal | props. pro and publ i cnrenber s. pr o filesinthe
resource/ bridges/inport/javal exanpl es directory of the IDL distribution
for IDL routines that provide information about data members associated with
given Java classes.

Managing IDL-Java Object Properties IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 87

Getting and Setting Properties

The IDL-Java bridge follows the standard IDL property interface to support data
member access on Java objects and classes.

To retrieve a property value from a Java object, use the following syntax:
bj Ref - >Get Property, PROPERTY=vari abl e

where Obj Ref isan instance of IDLjavaObject that encapsulates the Java object,
PROPERTY is the name of the Java object’s data member (property), and variableis
the name of an IDL variable that will contain the retrieved property value.

To retrieve multiple property values in a single statement supply multiple
PROPERTY=variable pairs separated by commas.

To set a property value on a Java object, use the following syntax:
bj Ref - >Set Property, Property=val ue

where Obj Ref isan instance of IDLjavaObject that encapsul ates the Java object,
PROPERTY is the name of the Java object’s data member, and value is value of the
property to be set.

To set multiple property valuesin asingle statement supply multiple
PROPERTY=value pairs separated by commas.

Note
The provided PROPERTY must map directly to a data member name. Any name
passed into either of the property routines is assumed to be afully qualified Java
property name. As such, the partial property name functionality provided by IDL is
not valid with IDL Java based objects.

The variable or value part may be an IDL primitive type, an instance of
IDLJavaObject, or an array of an IDL primitive type. See“IDL-Java Bridge Data
Type Mapping” on page 76 for more information.

Note
Besides other Java-based objects, no complex types (structures, pointers, etc.) are
supported as parameters to property calls.

IDL Connectivity Bridges Managing IDL-Java Object Properties

88 Chapter 5: Using Java Objects in IDL

Destroying IDL-Java Objects

The OBJ DESTROQY routine is used to destroy instances of IDLjavaObject. When
OBJ DESTROY is called with a Java-based object as an argument, IDL releases the
underlying Java object and frees IDL resources relating to that object.

Note
Destruction of the IDL object does not automatically cause the destruction of the
underlying Java object. Because Java utilizes a garbage collection mechanism to
release any information allocated for a particular object, the resources utilized by
the underlying Java object will persist until the Java virtual machine's garbage
collector runs.

Destroying IDL-Java Objects IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 89

Showing IDL-Java Output in IDL

By default, IDL prints the output from Java (the Syst em out and System err
output streams).

For example, given the following Java code:

public class hellowrld
{

/'l ctor

public hellowrld() {
Systemout.println("hellowrld ctor");
}

public void sayHello() {
Systemout.printin("Hello! (fromthe helloWrld object)");
}

}
The following output occursin IDL:

I DL> oJHel l o = OBJ_NEW' I DLj avaQhj ect $Hel | oWor1d', " helloWrld')
% hel | oWorl d ctor

I DL> oJHell o -> SayHel | o

% Hello! (fromthe hell oWrld object)

| DL> OBJ_DESTROY, oJHello

Example Code
This example code isalso provided inthehel | oJava. j ava and
hel | oj ava2. pr o files, which arein the

resource/ bri dges/i nport/javal exanpl es directory of the IDL
distribution.

Note
Dueto restrictionsin IDL concerning receiving standard output from non-main
threads, the bridge will only send Syst em out and Syst em er r information to
IDL from the main thread. Other threads’ output will be ignored.

Note
A print () inJavawill not have a carriage return at the end of the line (as opposed
toprintln(),which does). However, when outputting to Java both pri nt () and
println() will print to IDL followed by a carriage return. You can change this

result by having the Java-side application buffer its data up into the lines you wish
to seeonthe IDL-side.

IDL Connectivity Bridges Showing IDL-Java Output in IDL

90 Chapter 5: Using Java Objects in IDL

The IDLJavaBridgeSession Object

Java exceptions are handled within IDL through an 1DL-Java bridge session object,

IDL JavaBridgeSession. This Java object can be queried to determine the status of the
bridge, including information on any exceptions. For example, one important Java
object available through the session object is the last issued Java exception.

The session object is aproxy to an internal Java object, which is created during the
IDL-Java bridge initialization process. You can connect an | DL JavaObject to this
object using OBJ NEW:

0JSession = OBJ_NEW' | DLj avaObj ect $| DLJAVABRI DGESESSI ON')
Note

Only one Java session object needs to be created during an DL session. Subsequent
callsto this object will point to the same internal object.

When an exception occurs, the GetException function method indicates what
exception occurred:

0JException = 0JSessi on->Get Exception()

where 0JSessi on isareference to the session object and oJExcept i on isaproxy
objecttoaj ava. | ang. Thr owabl e object, which isthe class used in Javato
manage exceptions. The session object also has a ClearException method that clears
the session object’s last exception. The GetException method always calls
ClearException method.

The IDL JavaBridgeSession object also has the GetVersionObject method, which
retrieves the IDL JavaVersion object:

oJVersi on = 0JSessi on->Cet Ver si onoj ect ()

where 0JSessi on isareference to the session object and oJVer si on isaproxy
object to an IDL JavaVersion object. This object determines version information about
the IDL-Java bridge and the underlying Java system.

The IDL JavaVersion object provides the following function methods, which do not
require any arguments:

« GetBuildDate() - ajavalang.String object specifying the build date. For
example, Apr 1 2003.

» GetJavaVersion() - ajavalang.String object specifying the Java version. For
example, 1. 3.1_02.

The IDLJavaBridgeSession Object IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 91

* GetBridgeVersion() - ajava.lang.String object specifying the IDL-Java bridge
version.

Example Code
An example of the version object is provided in thebri dge_ver si on. pr o file,
whichisinIDL'sr esour ce/ bri dges/i nport/j ava/ exanpl es directory.

IDL Connectivity Bridges The IDLJavaBridgeSession Object

92 Chapter 5: Using Java Objects in IDL

Java Exceptions

During the operation of the bridge, an error may occur when initializing the bridge,
creating an | DLj avaQoj ect , calling methods, setting properties, or getting
properties. Typically, these errorswill be fixed by changing your IDL or Java code (or
by changing the bridge configuration). Java bridge errors operate like other IDL
errorsin that they stop execution of IDL and post an error message. These errors can
be caught like any other IDL error.

On the other hand, Java uses the exception mechanism to report errors. For example,
in Java, if we attempt to create ajava.lang.StringBuffer of negative length, a
java.lang.NegativeArraySizeException isissued.

Java exceptions are handled much like bridge errors. They stop IDL execution (if
uncaught) and they report an error message containing aline number. In addition, a
mechanism is provided to grab the exception object (a subclass of
javalang.Throwable) via the session object. Once connected with the exception
object, IDL can call any of the methods provided by this Java object. For example,
IDL can query the exception name to determine how to handleit, or print a stack
trace of where the exception occurred in your Java code.

The exception object is provided through the GetExpection method to the
IDL JavaBridgeSession object. See “The I DL JavaBridgeSession Object” on page 90
for more information about this object.

Uncaught Exceptions

If aJavaexception isnot caught, IDL will stop execution and display an Except i on
t hr own error message. For example, when the following program is saved as
Except | ssued. pr o, compiled, and ranin IDL:

PRO Except | ssued

; This will throw a Java exception
oJStrBuffer = OBJ_NEW $
"I DLJavaChj ect $j ava_l ang_StringBuffer', $
"java.lang. StringBuffer’, -2)

END
IDL issues the following output:

| DL> Except | ssued

% Exception thrown

% Execution halted at: EXCEPTI SSUED 4 Exceptlssues. pro
% $MAI NS

Java Exceptions IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 93

From the IDL command line, you can then use the session object to help debug the
problem:

I DL> o0JSessi on = OBJ_NEW' | DLJavaOnj ect $| DLIAVABRI DGESESSI ON)

| DL> oJExc = o0JSessi on->Get Exception()

| DL> oJExc->Print St ackTrace

% j ava. | ang. Negati veArraySi zeExcepti on:

% at java.lang. StringBuffer.<init>(StringBuffer.java: 116)

Example Code

A similar exampleisalso provided in the except i on. pr o file, which isin the
resour ce/ bri dges/i nport/javal exanpl es directory of the IDL
distribution. The except i on. pr o example shows how to use the utility routine
provided in the showexcept . pro file. Thisshowexcept utility routine can be re-
used to provide consist error messages when Java exceptions occur. The
showexcept . pro fileisalso provided in the
resource/ bri dges/i nport/javal exanpl es directory of the IDL
distribution.

Caught Exceptions

Java exceptions can be caught just like IDL errors. Consult the documentation of the
Java classesthat you are using to ensure IDL is catching any expected exceptions. For
example:

PRO Except Caught

; Grab the special |DLJavaBri dgeSessi on obj ect
0JBri dgeSessi on = OBJ_NEW ' | DLJava(hj ect $| DLJAVABRI DGESESSI ON')

bufferSize = -2
; Qur Java constructor night throw an exception, so let’s catch it
CATCH, error_status
IF (error_status NE 0) THEN BEG N
Use session object to get our Exception
o0JExc = 0JBridgeSessi on->Get Excepti on()
; should be of type
;| DLJAVAOBJECT$JAVA LANG NEGATI VEARRAYSI ZEEXCEPTI ON
HELP, oJExc
; Now we can access the nmenbers java.l ang. Throwabl e
PRI NT, 'Exception thrown:', oJExc->ToString()
0JExc->Print St ackTrace
; O eanup
OBJ_DESTROY, o0JExc
; Increase the buffer size to avoid the exception.
bufferSi ze = bufferSi ze + 100
ENDI F

IDL Connectivity Bridges Java Exceptions

94 Chapter 5: Using Java Objects in IDL

; This throws a Java exception the 1st tinme, but pass the 2nd tine.
oJStrBuffer = OBJ_NEW' | DLJavaObj ect $j ava_l ang_StringBuffer', $
"java.lang. StringBuffer', bufferSize)

OBJ_DESTROY, o0JStrBuffer
OBJ_DESTROY, 0JBri dgeSession

END

Example Code
A similar exampleisalso provided inthe except i on. pr o file, which isin the
resource/ bri dges/i nport/javal exanpl es directory of the IDL
distribution. The except i on. pr o example shows how to use the utility routine
provided in the showexcept . pro file. Thisshowexcept utility routine can be re-
used to provide consist error messages when Java exceptions occur. The
showexcept . pro fileisalso provided in the

resource/ bri dges/i nport/javal exanpl es directory of the IDL
distribution.

Java Exceptions IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 95

IDL-Java Bridge Examples

The following examples demonstrate how to access data through the IDL-Java
bridge:

e “Accessing Arrays Example”

e “Accessing URLs Example’ on page 98

e “Accessing Grayscale Images Example” on page 100
e “Accessing RGB Images Example” on page 103

Note
If IDL isnot ableto find any Java class associated with these examples, make sure
your IDL-Java bridge is properly configured. See “Configuring the Bridge” on
page 73 for more information.

Accessing Arrays Example

This example creates atwo-dimensional array within a Java class, which is contained
inafilenamed ar r ay2d. j ava. IDL then accesses this data through the ArrayDemo
routing, which isin afile named ar r aydeno. pro.

Example Code
Thesefilesare located inther esour ce/ bri dges/ i nport/j aval/ exanpl es
directory of the IDL distribution.

Thearray2d. j ava file contains the following text for creating a two-dimensional

array in Java
public class array2d {
short[][] m.as;
long[][] m.aj;

/1 ctor

public array2d() {
int SIZE1 = 3;
int SIZE2 = 4;

// default ctor creates a fixed nunber of elenents
m as = new short[SI ZE1] [SI ZE2] ;
m_aj new | ong[SI ZE1] [SI ZE2] ;

IDL Connectivity Bridges IDL-Java Bridge Examples

96 Chapter 5: Using Java Objects in IDL

for (int i=0; i<SIZEl; i++) {
for (int j=0; j<SIZE2; j++) {
mas[i][j] (short) (i*10+4j);
maj[i][j] = (long)(i*10+j);

}
}
}
public void setShorts(short[][] _as) {
m as = _as;
}
public short[][] getShorts() {return mas;}
public short getShortBylndex(int i, int j) {
return mas[i][j];
}
public void setLongs(long[][] _aj) {
maj = _aj;
}
public long[][] getLongs() {return maj;}
public long getLongBylndex(int i, int j) {return maj[i][j];}
}

Thear r aydeno. pr o file contains the following text for accessing the two-
dimensional array within IDL:

PRO ArrayDeno

The Java class array2d creates 2 initial arrays, one
; of longs and one of shorts. W can interrogate and
; change this array.
oJArr = OBJ_NEW' | DLJava(hj ect $ARRAY2D , 'array2d')

; First, let’s see what is in the short array at index
(2,3).
PRINT, 'array2d short(2, 3) ="', $
oJArr -> Get ShortBylndex(2, 3), $
(shoul d be 23)’

; Now, let’'s copy the entire array fromJava to IDL.

short ArrI DL = 0JArr->Get Shorts()

HELP, shortArrl DL

PRI NT, 'shortArrIDL[2, 3] ="', shortArrIDL[2, 3], $
(should be 23)*

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 97

; Let’s change this value...
shortArrIDL[2, 3] = 999
...and copy it back to Java...
0JArr->Set Shorts, shortArrl DL
: ...now its value should be different.
PRINT, 'array2d short(2, 3) ="', $
0JArr - >Get Short Byl ndex(2, 3), ' (shoul d be 999)'

Let’'s set our array to sonething different.
0JArr -> SetShorts, | NDGEN(10, 8)

PRINT, 'array2d short(0, 0) ="', $

0JAr r - >Get Short Byl ndex(0, 0), ' (should be 0)°
PRINT, 'array2d short(1, 0) ="', $

0JArr - >Get Short Byl ndex(1, 0), ' (should be 1)°
PRI NT, 'array2d short(2, 0) ="', $

0JArr - >Get Short Byl ndex(2, 0), ' (should be 2)*
PRINT, 'array2d short(0, 1) ="', $

0JArr - >Get Short Byl ndex(0, 1), ' (should be 10)*

; Array2d has a setlLongs nethod, but b/c arrays do not
(currently) promote, the first call to setLongs works
; but the second fails.
0JArr->Set Longs, L64I NDGEN(10, 8)
PRINT, 'array2d long(0, 1) ="', $
0JArr->Get LongByl ndex(0, 1), ' (shoul d be 10)'

; PRINT, ' (expecting an error on the next line...)'
; 0JArr->Set Longs, | NDGEN(10, 8)

; Cl eanup our object.
OBJ_DESTROY, o0JArr

END

After saving and compiling the above files (arr ay2d. j ava in Javaand
ArrayDeno. pro inIDL), updatethej bexanpl es. j ar fileinthe

resour ce/ bri dges/ i nport/j ava directory with the new compiled class and run
the ArrayDemo routinein IDL. The routine should produce the following results:

array2d short(2, 3) = 23 (should be 23)
SHORTARRIDL INT = Array[3, 4]

short ArrIDL[2, 3] = 23 (should be 23)
array2d short(2, 3) 999 (should be 999)
array2d short (0, 0) 0 (shoul d be 0)
array2d short(1, 0) 1 (should be 1)
array2d short(2, 0) 2 (shoul d be 2)
array2d short (0, 1) 10 (shoul d be 10)
array2d long(0, 1) = 10 (shoul d be 10)

IDL Connectivity Bridges IDL-Java Bridge Examples

98 Chapter 5: Using Java Objects in IDL

Accessing URLs Example

This example finds and reads a given URL, which is contained in afile named
URLReader . j ava. IDL then accesses this data through the URL Read routine, which
isinafilenamedur | r ead. pro.

Example Code
Thesefilesare located inther esour ce/ bri dges/ i nport/j aval/ exanpl es
directory of the IDL distribution.

The URLReader . j ava file contains the following text for reading a given URL in
Java

i mport java.io.*;
i mport java.net.?*;

public class URLReader

{
private ByteArrayQut put Stream m buffer;

// EE R R S I R I S O O

I
/1 Constructor. Create the reader
I
// R IR R S R R R I R R S I I R S I I S R I I S R I R S R R S I I S I I I S I I
public URLReader() {
m buffer = new ByteArrayCQut put Stream();
}

// R R bk kR R R I kb R R SRR R kb O R R S

/11

/'l readURL: read the data fromthe URL into our buffer
11

I returns: nunber of bytes read (0 if invalid URL)
11

/1 NOTE: reading a new URL clears out the previous data
11

// ER e b Sk kR Sk R R R o b ok S S R R I R S R R

public int readURL(String sURL) {
URL url;
InputStreamin = null;

m buffer.reset(); // reset our holding buffer to 0 bytes
int total bytes = 0;

byte[] tenpBuffer = new byte[4096];
try {

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 99

}

11
Il
Il
11
Il

url = new URL(SURL);
in = url.openStrean();

int bytes_read;

while ((bytes_read = in.read(tempBuffer)) !'=-1) {
m buffer.wite(tenpBuffer, 0, bytes_read);
total _bytes += bytes_read;

} catch (Exception e) {
Systemerr.printin("Error reading URL: "+sURL);
total _bytes = O;

} finally {

try {
in.close();

m buf fer.cl ose();
} catch (Exception e) {}

}

return total bytes;

ER I b Sk Rk R R o kR R o S S o S S R S S

getData: return the array of bytes

R R b b Ok R Rk o kR R R I b Sk O O A R

public byte[] getData() {

}

11
11
11
Il
Il
Il
11

return mbuffer.toByteArray();

LR I S O S

mai n: reads URL and reports # of byts reads

Usage: java URLReader <URL>

R I O S

public static void main(String[] args) {

if (args.length !'= 1)

Systemerr.println("Usage: URLReader <URL>");
el se {

URLReader o = new URLReader ();

int b = o.readURL(args[0]);

System out . printl n("bytes="+b);

IDL Connectivity Bridges IDL-Java Bridge Examples

100 Chapter 5: Using Java Objects in IDL

Theurl r ead. pr o file contains the following text for inputting an URL asan IDL
string and then accessing its datawithin IDL:

FUNCTI ON URLRead, sURLName

Create an URLReader.
0JURLReader = OBJ_NEW'' | DLj avaObj ect $URLReader', ' URLReader')

Read the URL data into our Java-side buffer.
nByt es = oJURLReader - >ReadURL(sURLNan®)

; PRINT, 'Read ', nBytes, ' bytes’

Pull the data into |DL.
byteArr = oJURLReader - >Get Dat a()

Cl eanup Java obj ect.
OBJ_DESTROY, oJURLReader

Return the data.
RETURN, byt eArr

END

After saving and compiling the above files (URLReader . j ava in Javaand
urlread. proinlDL), you can runthe URLRead routinein IDL. Thisroutineisa

function with one input argument, which should be aIDL string containing an URL.
For example:

address = 'http://ww. RSI nc. com
data = URLRead(address)

Accessing Grayscale Images Example

This example creates a a grayscale ramp image within a Java class, whichis
contained in afile named G eyBands| mage. j ava. IDL then accesses this data
through the ShowGreylmage routine, which isin the showgr eyi mage. pr o file.

Example Code

Thesefilesare located inther esour ce/ bri dges/ i nport/j aval/ exanpl es
directory of the IDL distribution.

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 101

TheGr eyBands| nage. j ava file containsthe following text for creating agrayscale
image in Java:

i mport java.awt.*;
i mport java.awt .inage.*;

public class G eyBandsl mage extends Bufferedl mage
{

/1 Menbers

private int mheight;

private int mw dth;

I
/'l ctor
I
public GreyBandsl mage() {
super (100, 100, Bufferedl mage. TYPE_ | NT_ARGB);
gener at el mage() ;
m _hei ght = 100;
mwi dth = 100;

}
I
/1 private nethod to generate the inmage
I
private void generatel mge() {
Col or c;
int wwdth = getWdth();
i nt height = getHeight();
W itabl eRaster raster = getRaster();
Col or Mbdel nodel = get Col or Mbdel ();
i nt BAND_PI XEL_W DTH = 5;
int nBands = wi dt h/ BAND_PI XEL_W DTH;
int greyDelta = 255 / nBands;
for (int i=0; i < nBands; i++) {
c = new Color(i*greyDelta, i*greyDelta, i*greyDelta);
int argbh = c. get RGB();
Obj ect col orData = nodel . get Dat aEl enents(argb, null);
for (int j=0; j < height; j++)
for (int k=0; k < BAND_PI XEL_W DTH;, k++)
raster.setDat aEl ements(j, (i*5)+k, colorData);
}
}
I

IDL Connectivity Bridges IDL-Java Bridge Examples

102 Chapter 5: Using Java Objects in IDL

/1 mutators

/1

public int[] getRawbData() {
Raster oRaster = getRaster();
Rect angl e oBounds = oRast er. get Bounds();
int[] data = new int[mheight * mwdth * 4];

data = oRaster. getPi xel s(0, 0, 100, 100, data);
return data;

}
public int getH() {return mheight; }
public int getW) {return mwdth; }

}
Theshowgr eyi mage. pr o file contains the following text for accessing the
grayscale image within IDL:

PRO ShowGr eyl mage
Construct the G eyBandl mage in Java. This is a sub-class of
Bufferedlmage. It is actually a 4 band i mage that happens to

di splay bands in greyscale. It is 100x100 pi xel s.
0Grey = OBJ_NEW' | DLj ava(j ect $Gr eyBandsl nage' , ' GreyBandsl nage')

; Get the 4 byte pixel val ues.
data = oGrey -> Get RawDat a()

; Get the height and wi dth.

h = oGey -> GetH()

w = 0Gey -> GtW)

; Display the graphic in an I DL w ndow
W NDOW 0, XSIZE = 100, YSIZE = 100
TV, REBIN(data, h, w)

; O eanup
OBJ_DESTROY, oG ey

END

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 103

After saving and compiling the above files (Gr eyBands| mage. j ava in Javaand
showgr eyi nmage. pr o inlDL), you can run the ShowGreylmageroutinein IDL. The
routine should produce the following image:

Figure 5-1: Java Grayscale Image Example

Accessing RGB Images Example

This exampleimports an RGB (red, green, and blue) image from the IDL distribution
into aJavaclass. Theimageisinthegl owi ng_gas. j pg file, whichisin the
exanpl es/ dat a directory of the IDL distribution. The Java class also displaysthe
image in a Java Swing user-interface. Then, theimage is accessed into IDL and
displayed with the new ilmage tool.

Example Code
The Javaand IDL code for this example is provided in the

resource/ bri dges/ i nport/javal exanpl es directory, but the Java code has
not been built as part of thej bexanpl es. j ar file.

Note
This example uses functionality only available in Java 1.4 and later.

Note

Dueto a Javabug, this example (and any other example using Swing on AWT) will
not work on Linux platforms.

IDL Connectivity Bridges IDL-Java Bridge Examples

104

Chapter 5: Using Java Objects in IDL

The first and main Java class is FrameTest, which creates the Java Swing application
that imports the image from the gl owi ng_gas. j pg file. Copy and paste the
following text into afile, then saveit asFr aneTest . j ava:

i mport java.awt.*;

i mport java.awt .inage.*;

i mport java.awt.event.*;

i mport javax.sw ng.*;

i mport javax.sw ng.event. *;
i mport java.io.File;

publ
RSI
int
int

ic class FraneTest extends JFrame {

| mgeArea c_i ngArea;
m Xsi ze;
m ysi ze;

Box c_contr ol Box;

public FraneTest() {

super("This is a JAVA Swing Programcalled fromI|DL");
/1 Dispose the frame when the sys close is hit
set Def aul t Cl oseQper ati on(DI SPOSE_ON_CLOSE) ;

m xsi ze = 350;
mysize = 371;
bui I dGUI () ;

}

public void buildGU () {

C_

control Box = Box.createVertical Box();

JLabel |11 = new JLabel ("Exanpl e Java/lDL Int

JButton bLoadFile = new JButton("Load new fi

bLoadFi | e. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerforned(ActionEvent e) {

JFi | eChooser chooser = new JFi | eChooser (new

}

File("c:\\RSI\\IDL63\\ EXAMPLES\\ DATA")) ;
chooser.setDialogTitle("Enter a JPEG file"
i f (chooser.showQpenDi al og(FrameTest.this)

JFi | eChooser . APPROVE_CPTI ON) {

eraction");
le");

)

java.io.File fname = chooser. get Sel ectedFile();

String filenane = fnane. getPath();
Systemout. println(fil enane);
c_i ngArea. set |l mageFi | e(fil enane);

}

IDL-Java Bridge Examples

IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 105

1),

JButton bl = new JButton("Cl ose this exanple");
bl. addActi onLi st ener (new Acti onLi stener() {
public void actionPerforned(ActionEvent e) {
di spose();
}
b

c_i ngArea = new
RSI | mageArea("c:\\rsi\\idl 63\\exanpl es\\data\\gl owi ng_gas.jpg",
new Di nensi on(m xsi ze, m ysi ze));

Box mai nBox = Box.createVertical Box();
Box rowBox = Box. createHorizontal Box();
r owBox. add(b1l);

r owBox. add(bLoadFi | e) ;

c_control Box. add(Il1);
c_contr ol Box. add(r owBox) ;
mai nBox. add(c_contr ol Box) ;
mai nBox. add(c_i ngArea);

get Cont ent Pane() . add(mai nBox) ;

pack() ;
set Visible(true);
c_i ngAr ea. di spl ayl mage() ;
c_i ngAr ea. addResi zelLi st ener (new RSI | mageAr eaResi zeLi stener () {
public void areaResized(int newx, int newy) {
Di mensi on cdim= c_control Box. get Si ze(nul l);

Insets i = getlnsets();
newx = i.left + i.right + newx;
new = i.top + cdimheight + new + i.bottom
set Si ze(new Di mensi on(newx, newy));
}
1

}

public void setlmageData(int [] ingData, int xsize, int ysize) {
Menoryl mageSource i n8 = new Menoryl mageSour ce(xsi ze, ysize,
imgData, 0, ysize);
I mage ingtnp = createl nage(i nms);
Graphics g = c_i ngArea. get Graphi cs();
g.drawi mage(i ngtnp, O, O, null);

}

public void setlmgeData(byte [][][] inmgData, int xsize,

IDL Connectivity Bridges IDL-Java Bridge Examples

106

Chapter 5: Using Java Objects in IDL

int ysize) {

Systemout. println("SIZE = "+xsi ze+"x" +ysi ze) ;
int newArray [] = new int[xsize*ysize];

int pixi = 0;

int curpix = 0;
short [] currgb = new short[3];
for (int i=0;i<mxsize;i++) {
for (int j=0;j<mysize;j++) {
for (int k=0;k<3;k++) {
currgb[k] = (short) imgData[k][i][]];
currgb[k] = (currgb[k] < 128) ? (short) currgb[k] : (short)
(currgb[k] -256);
}
curpix = (int) currgb[0] * +
((int) currgb[1] * (int) Math.pow2,8)) +
((int) currgb[2] * (int) Mth.pow2, 16));
if (pixi %1000 == 0)
Systemout.println("PI Xl = "+pixi+" "+curpix);
newAr ray[pi xi ++] = curpi x;
}
}

Menoryl mageSource i n8 = new Menoryl mageSour ce(xsi ze, ysize,
newArray, 0, ysize);
c_i mgArea. set | mageObj (c_i ngAr ea. creat el nage(i ns));

}

public byte[][][] getlnmageData()
{

int wwdth = 1;

int height = 1;

Pi xel Gr abber pG ab;

wi dth = m xsi ze;
hei ght = m.ysi ze;

/1 pixarray for the grab - 3D bytearray for display
int [] pixarray = new int[w dth*hei ght];
byte [][][] bytearray = new byte[3][wi dth][height];

/1 create a pixel grabber
pG ab = new Pi xel G abber (c_i ngArea. get | magebj (), 0, O,
wi dt h, hei ght, pixarray, 0, w dth);

/1 grab the pixels fromthe inmge
try {

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 107

bool ean b = pG ab. grabPi xel s();
} catch (InterruptedException e) {
Systemerr.println("pixel grab interrupted");
return bytearray;

}

/1 break down the 32-bit integers fromthe grab into 8-bit bytes
/1 and fill the return 3D array

int pixi = 0;

int curpix = 0;
for (int j=0;j<mysize;j++) {
for (int i=0;i<mxsize;i++) {
curpi x = pixarray[pixi ++];
bytearray[O][i][j] = (byte) ((curpix >> 16) & Oxff);
bytearray[1] [i][]] (byte) ((curpix >> 8) & O0xff);
bytearray[2][i][j] = (byte) ((curpix) & Oxff);
}
}

return bytearray;

}

public static void main(String [] args) {
FrameTest f = new FraneTest();

}

Note
The abovetext isfor the FrameTest class that accessesthe gl owi ng_gas. j pg file
in the exanpl es/ dat a directory of adefault installation of IDL on a Windows
system. Thefile'slocation is specified asc: \\ RSI\ \ | DL63\ \ EXAMPLES\ \ DATA
in the abovetext. If the gl owi ng_gas. j pg fileisnot in the same location on
system, edit the text to change the location of thisfile to match your system.

The FrameTest class uses two other user-defined classes, RSIImageArea and
RSIImageAreaResi zeL istener. These classes help to define the viewing area and
display theimage in Java. Copy and paste the following text into afile, then saveit as
RSI | mageAr ea. j ava:

i mport javax.sw ng.*;

i mport java.awt.*;

i mport java.awt.event.*;

i mport java.util.Vector;
import java.io.File;

IDL Connectivity Bridges IDL-Java Bridge Examples

108 Chapter 5: Using Java Objects in IDL

public class RSIInmageArea extends JConponent inplenents
MouseMot i onLi st ener, MbouselLi stener {

I mage c_ing;
int mboxw = 100;
int mboxh = 100;

Di nension c_dim

bool ean m pressed = fal se;

int mbutton = 0;

Vector c_resizelisteners = null;

public RSIImageArea(String ingFile, Dinmension dim {

c_ing get Tool kit (). getl nmage(i ngFile);
c_dim=dim

set PreferredSi ze(dim;

set Si ze(dinm;

addMouselbt i onLi st ener (this);

addMouseli st ener (this);

}

public void addResi zeLi st ener (RSl | mageAr eaResi zeLi stener |) {
if (c_resizelisteners == null) c_resizelisteners = new Vector();
if (! c_resizelisteners.contains(l)) c_resizelisteners.add(l);

public void renoveResi zeLi st ener (RSl | nageAr eaResi zelLi stener 1) {
if (c_resizelisteners == null) return;
if (c_resizelisteners.contains(l)) c_resizelisteners.renove(l);

}

public void displaylmge() {
repaint();

}
public void paint(Gaphics g) {

int xsize c_inmg.getWdth(null);
int ysize c_ing. getHeight(null);
if (xsize !'= -1 && ysize = -1) {
if (xsize !'=c_dimwdth || ysize != c_dimheight) {
c_dimw dth = xsi ze;
c_di m hei ght = ysi ze;
set PreferredSi ze(c_dim;
setSize(c_dim;
if (c_resizelisteners !'=null) {
RSI | mrageAr eaResi zeLi stener | = null;
for (int j=0;j<c_resizelisteners.size();j++) {

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 109

I = (RSII mageAr eaResi zeli st ener)
c_resizelisteners.elementAt(j);
| . areaResi zed(xsi ze, ysize);

}
}
}
}
g.drawi mage(c_inmg, 0, O, null);
}
public void setlmageFile(String fileNanme) {
c_img = null;
c_img = getTool kit().getlmge(fil eNane);
repaint();
}

public I mage getlnmageOhj () {
return c_ing;

}

public void setlmgeObj (I nage ing) {
c_inmg = inyg;
repaint();

}

public void drawZoonBox(MuseEvent e) {
int bx = e.getX() - mboxw 2;
bx = (bx >=0) ? bx :0;
int by = e.getY() - mboxh/2;
by = (by >=0) ? by :0;
int ex = bx + m boxw,
if (ex >c_dimwdth) {
ex = c_di mw dth;
bx = c_di m w dt h-m _boxw;
}
int ey = by + mboxh;
if (ey > c_dimheight) {
ey = c_di m height;
by c_di m hei ght - m boxh;
}

repaint();

Graphics g = get G aphics();

g.drawi mage(c_i ng, bx, by, ex, ey, bx+(mboxw 4), by+(m boxh/4),
ex- (m_boxw 4), ey-(m_boxh/4), null);

g. set Col or (Col or. white);

g. drawRect (bx, by, mboxw, m boxh);

IDL Connectivity Bridges IDL-Java Bridge Examples

110 Chapter 5: Using Java Objects in IDL

}

public void nouseDragged(MouseEvent e) {
dr awZoonBox(€) ;

}

public void nmouseMoved(MouseEvent e) {

G aphics g = get G aphics();

if (mpressed & (mbutton == 1)) {
dr awZoonBox(e) ;
g. set Col or (Col or. white);
g.drawst ri ng(" DRAG', 10, 10);

} else {

g. set Col or (Col or. white);
String s = "("+e.getX()+","+e.getY()+")";
repaint();
g.drawstring(s, e.getX(), e.getY());
}

}

public void nmoused i cked(MouseEvent e) {}
public void nmouseEnt ered(MouseEvent e) {}
public void nouseExited(MuseEvent e) {}

public void nousePressed(MuseEvent e) {
m pressed = true;

m button = e.getButton();

repaint();

if (mbutton == 1) drawZoonBox(e);

}

public void nouseRel eased(MouseEvent e) {
m pressed = fal se;
m button = O;

}

}

And copy and paste the following text into afile, then save it as
RSI | mageAr eaResi zeli st ener. j ava:

public interface RSIInmageAreaResi zeli stener {
public void areaResized(int newx, int newy);

}

Compile these classes in Java. Then either update thej bexanpl es. j ar filein the
resour ce/ bri dges/ i nport/j ava directory with the new compiled class, place

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 111

the resulting compiled classes in your Java class path, or edit the VM Classpath
setting in the IDL-Java bridge configuration file to specify the location (path) of these
compiled classes. See “ Configuring the Bridge” on page 73 for more information.

With the Java classes compiled, you can now accessthemin IDL. Copy and paste the
following text into the IDL Editor window, then saveit as| mageFr omJava. pr o:

PRO | mageFromJava
; Create a Swing Java object and have it |oad i mage data
into IDL.

; Create the Java object first.
0JSwi ng = OBJ_NEW' | DLj avaQbj ect $FraneTest', 'FraneTest')

; Get the inmage fromthe Java object.
i mage = 0oJSwi ng -> Getl nageDat a()

PRI NT, 'Loaded Inmage |nfornation:'
HELP, i mage

; Delete the Java object.
OBJ_DESTROY, 0JSw ng

; Interactively display the inmage.
I I MAGE, inmage

END

After compiling the above routine, you can runiit in IDL. This routine produces the
following Java Swing application.

&, This is a JAVA Swing Program called from IDL [B[E]
Example JavalDL Interaction

Close this example Load new file

Figure 5-2: Java Swing Application Example

IDL Connectivity Bridges IDL-Java Bridge Examples

112 Chapter 5: Using Java Objects in IDL

Then, the routine produces the following ilmage tool.

o £ Tsmt Operabors Wirdow e
Dlzlala| o|-|x|=|e| =] [Wolale] ol alsololel

e

O "s0 100 150 200 250 a00 350

Il o seec e, ek and hag o sl bl bems

Figure 5-3: ilmage Tool from Java Swing Example
Note

After IDL starts the Java Swing application, the two displays are independent of
each other. If anew imageisloaded into the Java application, the IDL ilmagetool is

not updated. If the ilmage tool modifies the existing image or opens a new image,
the Java Swing application is not updated.

IDL-Java Bridge Examples IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 113

Troubleshooting Your Bridge Session

The IDL-Java bridge provides error messages for specific types of operations. These
messages can be used to determine when these errors occur, how these errors happen,
and what solutions can be applied. The following sections pertain to these error
messages and their possible solutions for each type of operation:

“Calling System.exit”

“Errors When Initializing the Bridge”

“Errors When Creating Objects’ on page 114

“Errors When Calling Methods’ on page 115

“Errors When Accessing Data Members’ on page 116

Calling System.exit

The Javamethod Syst em exi t terminates the process in which the Java Virtual
Machineis running. When the Java Virtual Machineisinitialized by IDL, terminating
its process also terminates IDL.

Errors When Initializing the Bridge

The IDL-Java bridge initializes when the first Java object in IDL is created. If the
bridge is not configured correctly, an error message is issued and the IDL stops. The
following errors occur because the IDL-Java bridge cannot find the Java Virtual
Machine on your system. On UNIX, check the IDLJAVAB_LIB_LOCATION
environment variable, and on Windows, check the IDLJAVAB_LIB_LOCATION
environment variable. If this environment variable does not exist on your system,
createit and set it equal to the location of the Java Virtual Machine on your system.
See " Configuring the Bridge” on page 73 for details:

Bad JVM Hone val ue: ' path' , where pathisthe location of Java Virtua
Machine on your system.

JVM shared lib not found in path 'JVM LibLocation' , where JVM
shared lib is the location of the Java Virtual Machine shared library and JVM
LibLocation is the value of the IDLJAVAB_LIB_LOCATION environment
variable.

No valid JVMshared library exists at location pointed to
by $I DLJAVAB LI B_LOCATI ON

IDL Connectivity Bridges Troubleshooting Your Bridge Session

114 Chapter 5: Using Java Objects in IDL

e idljavab.jar not found in path 'path',wherepathisthelocation of
the/resource/ bri dges/inport/java directory inthe IDL distribution.

e Bridge cannot determ ne which JVMto run

e Java virtual machine failed to start

e Failure | oading JyM path/ JVM shared |ib nane, where path isthe
location of the Java Virtual Machine and JVM shared lib name is the name of
the main Java shared library, which isusually I i bj vm so on UNIX and
jvmdl 1 onWindows.

If IDL catches an error and continues, subsequent attempts to call the bridge will
generate the following message:

e |DL-Java bridge is not running

If this message occurs, fix the error and restart IDL.
Errors When Creating Objects

The following error messages can occur while creating a Java object in IDL. Possible
solutions for these errors are also provided:

e Wong nunber of paraneters -occursif OBJ NEW does not have 2 or
more parameters. Make sure you are specifying the class name twice; oncein
uppercase with periods replaced by underscores for IDL, and another with
periods for Java. See “Java Class Namesin IDL” on page 82 for details.

* Second paraneter nust be the Java cl ass nane - occursif 2nd
parameter isnot an IDL string. When using OBJ _NEW, make sure the Java
class name parameter is an IDL string. In other words, the class name has a
single quote mark before and after it. See* Java Class Namesin IDL” on
page 82 for details.

e dass classname not found, where classname is the class name you
specified in the first two parameters to OBJ NEW - occursif the IDL-Java
bridge cannot find the class name specified. Check the spelling of each class
name parameter and make sure the class name specified for IDL isreferring to
the same type of object specified for the Java class name. If the parameters are
correct, check the Classpath setting in the IDL-Java bridge configuration file.
Make sure the Classpath is set to the correct path for the class files containing
the classname class. See “ Configuring the Bridge” on page 73 for details.

* (lass classname is not a public class,whereclassnameistheclass
name you specified in the first two parametersto OBJ NEW - occurs if

Troubleshooting Your Bridge Session IDL Connectivity Bridges

Chapter 5: Using Java Objects in IDL 115

specified classisnot apublic class. Edit your Java code to make sure the class
you want to accessis public.

e Constructor class: : class(signature) not found,whereclassistheclass
name - occursif the IDL-Java bridge cannot find the class constructor with the
given parameters. Check the spelling of the specified parameters and look in
your Java code to seeif you are specifying the correct arguments for the class
you are trying to create. Also check to ensure your IDL data can be promoted
to the data types in the Java signature. See “ Java Class Namesin IDL” on
page 82 for details.

e Illegal IDL value in paraneter n,wherenisthe position of the
parameter - occursif anillegal parameter type is provided. For example, an
IDL structureis not allowed as a parameter to an |IDLjavaObject.

e Exception thrown -occursif an exception occursin Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDL JavaBridgeSession object. See “The I DL JavaBridgeSession Object” on
page 90 for details.

Errors When Calling Methods

The following error messages can occur while calling methods to Java objectsin
IDL. Possible solutions for these errors are also provided:

e Illegal IDL value in paraneter n,wherenisthe position of the
parameter - occursif anillegal parameter type is provided. For example, an
IDL structure are not allowed as a parameter to an |IDLjavaObject.

* (Cass class has no nethod naned method, where classisthe class name
and method is the method name specified when trying to call the Java method -
occursif the method of given name does not exist. Check the spelling of the
method name. Also compare the method name in the Java class source file
with the method name provided when calling the method in IDL. See “What
Happens When a Method Call Is Made?’ on page 84 for details.

e class : method(signature) is a void method. Must be called as a
pr ocedur e, where class is the class name and method is the method name
specified when avoid Java method is called asan IDL function. Change the
syntax of the method call. See “Method Calls on IDL-Java Objects’” on
page 84 for details.

* Method class: : method(signature) not found, where classisthe class
name and method is the method name specified when trying to call the Java
method - occurs if the IDL-Java bridge cannot find the method with a

IDL Connectivity Bridges Troubleshooting Your Bridge Session

116 Chapter 5: Using Java Objects in IDL

matching signature. Check the spelling of the method name. Also compare the
method name in the Java class source file with the method name provided
when calling the method in IDL. Also check to ensure your IDL data can be
promoted to the Java signature. See “What Happens When a Method Call Is
Made?’ on page 84 for details.

e Exception thrown -occursif an exception occursin Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDL JavaBridgeSession object. See “The IDL JavaBridgeSession Object” on
page 90 for details.

Errors When Accessing Data Members

The following error messages can occur while accessing data members to Java
objectsin IDL. Possible solutions for these errors are also provided:

e Illegal IDL value in paraneter n,wherenisthe position of the
parameter - occursif anillegal parameter type is provided. For example, an
IDL structureis not allowed as a parameter to an IDLjavaObject.

e dass class has no data nenber named property, whereclassisthe
class name and property is the data member name specified when trying to
access the Java data member - occursif the data member of the given name
does not exist. Check the spelling of the property name. Also compare the data
member name in the Java class source file with the property name provided
when accessing it in IDL. See “Managing | DL-Java Object Properties’ on
page 86 for details.

e Property class : property of type type not found, whereclassisthe
class name, property is the data member name specified, and typeis property’s
data type when trying to access the Java data member - occursif the IDL-Java
bridge cannot find the Java data member of the given type. Check the datatype
of Java data member and make sure you are trying to use asimilar typein IDL.
See “ Getting and Setting Properties’ on page 87 for details.

e Exception thrown -occursif an exception occursin Java. Either correct or
handle the Java exception. The Java exception can be determined with the
IDL JavaBridgeSession object. See “The | DL JavaBridgeSession Object” on
page 90 for details.

Troubleshooting Your Bridge Session IDL Connectivity Bridges

Part Il: Exporting from
IDL

Chapter 6

Exporting IDL Objects

This chapter discusses the following topics.

Overview of Exporting IDL Objects 120
Wrapper Objects 121
Object Lifecycle 124
IDL ACCESS ... it 126

IDL Connectivity Bridges

Parameter Passing and Type Conversion . 129
EventHandling..................... 132
Supported Platformsand IDL Modes. ... 133
Configuring Build and Client Machines . 135

119

120 Chapter 6: Exporting IDL Objects

Overview of Exporting IDL Objects

IDL’s Export Bridge technology allows you to easily integrate IDL technology into
external environments using the latest component based frameworks and technol ogy.
Unlike the Callable IDL interface, which lets you create applications that exchange
datawith IDL through IDL variables and issue commands to the IDL interpreter but
which requires familiarity with both C/C++ and IDL’s own internal semantics and
syntax, the export bridge technology allows you to create IDL abjects that can be
called directly from Javaand COM applications.

Interaction with IDL isthrough native Javaand COM wrapper objects that are
generated for each IDL object with which client applications want to interact. The
wrapper objects manage all aspects of IDL loading, initialization, process
management, and cleanup, so you only need to be familiar with the client language
(for embedding the wrapper in the client application) and the basics of IDL (for
accessing and manipulating IDL data and processes).

The key to the Export Bridge is the Export Bridge Assistant, which generates these
native wrapper objects from IDL objects. For more information on the Assistant, see
“Using the Export Bridge Assistant” on page 139. For more information on wrapper
objects, see “Wrapper Objects’ on page 121.

Note
Before attempting to create and use wrapper objects, you should be familiar with
the information in “ Configuring Build and Client Machines’” on page 135.

Overview of Exporting IDL Objects IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 121

Wrapper Objects

The main concept used when exporting IDL objects for usein aclient application is

that of awrapper object. A wrapper object is a native-language object (COM or Java)
that exposes an IDL object’s behavior to aclient. The client interacts with an instance
of the wrapper object using native-language constructs and native-language data

types.

A wrapper object is built using the Export Bridge Assistant, in which you can choose
which methods and properties of the IDL object to expose to the client. During the
wrapper creation, you must specify the language-dependent variable types for all the
parameters of the methods and properties to be exported. Thisisrequired since IDL
has dynamically typed variables, whereas Java and COM do not. You can leave some
properties or methods unimplemented in the wrapper object. For more information,
see “Using the Export Bridge Assistant” on page 139.

When the Assistant exports an IDL object, it creates alanguage-specific wrapper
object for the IDL object. The wrapper exposes methods and properties of the
underlying IDL object it wraps, and the client interacts with the wrapper. When the
client calls amethod or modifies a property on awrapper object, it is transated
through a series of abstraction layers, and the underlying IDL object’s method is
called or property modified.

Every wrapper object has a collection of stock methods that are common to all
wrapper objects as described in this document. Additionally, the underlying
abstraction layers also handle creating the IDL object in another process. This use of
multiple processes provides for IDL object pooling and isolation. For more
information on these processes, see“IDL Access’ on page 126.

For COM object wrappers, a. dl | fileiscreated for nondrawable objects; an . ocx
fileis created for drawable objects. In addition, a. t | b fileis generated. The user
registers the component and references the COM type library and property accessors
(put/get) on the objects using native language constructs. A COM wrapper provides
an | Dispatch-based interface for client use.

For Java object wrappers, javafiles (. j ava) and classfiles (. cl ass) are created.
The user references the Java class definition in their code projects and calls methods
and property accessors (set/get) on the objects using native language constructs. The
Javawrapper is exposed as a standard Java object.

The actual use of the generated wrapper objects depends on the structure and patterns
used for the client environment. For more information, see “Using Exported COM
Objects’ on page 181 and “Using Exported Java Objects’ on page 205.

IDL Connectivity Bridges Wrapper Objects

122 Chapter 6: Exporting IDL Objects

IDL Connector Objects and Custom Wrapper Objects

Accessto IDL functionality from an external programming environment is available
through connector and custom wrapper objects. The prebuilt connector wrapper
object provides the ability to communicate with the IDL process from and external
application. A custom wrapper object incorporates the functionality of your own IDL
object.

Connector Objects

The connector object (distributed with IDL) provides accessto IDL’s processing
capabilities through a number of methods that |et you communicate with the IDL
process. Using these methods, you can:

* Create and destroy instances of the connector object in your application
» Passdatato and retrieve datafrom IDL

e Get and set the IDL process name (see “IDL Access’ on page 126 for more
information)

* Execute IDL commands

Although the connector object does not provide support for graphics, it provides an
easy way to access the processing power of IDL in an external environment. See
“Stock Wrapper Methods’ on page 184 (COM) and “ Stock Wrapper Methods” on
page 208 (Java) for complete language-specific method reference information. For
examples using the connector object, see Chapter 10, “ Using the Connector Object”.

Note
There are no stock properties.

Custom Wrapper Objects

A custom wrapper object isan IDL object that is exported using the Export Bridge
Assistant. A custom wrapper object contains the stock methods (referenced above) in
addition to the specific methods and properties of the IDL abject being wrapped. For
information about how to create an IDL object that can be successfully exported, see
Chapter 11, “Writing IDL Objects for Exporting”. Examples of creating and using
custom objects are availablein:

e Chapter 12, “Creating Custom COM Export Objects’
e Chapter 13, “Creating Custom Java Export Objects’

Wrapper Objects IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 123

Note
For more information on the language-specific wrapper objects, see* COM
Wrapper Objects’ on page 183 (COM) and “Java Wrapper Objects’ on page 207
(Java).

Drawable and Nondrawable Objects

Custom wrapper objects can encapsulate either drawable or nondrawable IDL
objects. To create a custom drawable wrapper object, the IDL source object must
subclass from an IDLitWindow, IDLgrWindow, or IDLitDirectWindow visualization
class and implement a set of callback routines for event handling. When events are
detected for that window object, the callback methods are called with the information
specific to the event detected. By subclassing from one of the drawable objects, a
visualization written for usein aniTool visualization, Object Graphics display, or
Direct Graphics display will seamlessly operate in an external environment viaan
export bridge. See “ Exporting Drawable Objects’ on page 252 for important
information about creating and using drawable objects.

Nondrawable IDL objects are not derived from the IDLitWindow, IDLgrwindow, or
IDLitDirectWindow classes and do not render to the screen. Nondrawable IDL
objects do not have to inherit from any superclass, though derivation from
IDLitComponent is necessary to fire IDL notifications.

Note
Java drawabl e objects are not supported on the Macintosh OS X platform.

IDL Connectivity Bridges Wrapper Objects

124 Chapter 6: Exporting IDL Objects

Object Lifecycle

Object lifecycle means the duration in which an object is valid for use between the
timeit isinstantiated or created and then released or destroyed. There are two
lifecycles to understand when dealing with the Export Bridge's wrapper objects: the
lifecycle of aninstance of the wrapper object and the lifecycle of the underlying IDL
object being wrapped.

The lifecycle of awrapper object begins when an instance of the wrapper object is
created within the client’s application. However, the underlying IDL object is not
created until the CreateObject stock method is called on the wrapper object instance.
Every wrapper object has a set of stock methods, including CreateObject and
DestroyObject, which are used to manage the object lifecycle. (For moreinformation,
see “ Object Creation” and “ Object Release” below.)

Note
For Java objects, the method is createObject, which is a more Java-like method-
naming scheme. Assume that when this chapter mentions method calls, COM
capitalizes the first word, but Java does not.

When the CreateObject method is called, the underlying IDL processis created (if
necessary), and an instance of the IDL object is created. The lifecycle of the IDL
object continues until the DestroyObject stock method is called on the wrapper object
instance. The lifecycle of the client’s wrapper object instance continues until it is
released or destroyed using native language constructs.

Object Creation

Calling the CreateObject method on the wrapper object instance creates an instance
of the underlying IDL object and callsits Init method with the specified parameters,
if any. See “CreateObject” on page 186 (COM) and “createObject” on page 210
(Java) for language-specific calling conventions.

Object Release

Calling the DestroyObject method callsthe underlying IDL object’s Cleanup method,
if present; then the underlying IDL object itself is destroyed. Calling DestroyObject
does not release or destroy the wrapper object instance within the client space. This
happens when the release method is called on the wrapper instance. See
“DestroyObject” on page 188 (COM) and “destroyObject” on page 212 (Java) for
language-specific calling conventions.

Object Lifecycle IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 125

Java uses a garbage-collection scheme to clean up memory. It isimportant that there
are no references to the wrapper object remaining in the client application; otherwise,
the Java Virtual Machine (JVM) will not garbage-collect the wrapper object.

Note
There can be a period of time between the call to the DestroyObject method and
when the wrapper instance itself isreleased. During that period, no method calls on
the wrapper instance can be made because the underlying IDL object no longer
exists.

IDL Connectivity Bridges Obiject Lifecycle

126 Chapter 6: Exporting IDL Objects

IDL Access

Calling amethod or accessing a property on awrapper object instance callsinto the
underlying IDL object’s method or property. Each wrapper object is associated with
an IDL process, controlled by the IDL main process, by giving it a process name
during wrapper creation by the Export Bridge Assistant. All wrapper objects that use
the same process name have their underlying IDL objects created within the same
IDL process. For each wrapper object that provides a unique process name, a new
IDL processis created.

AsaCOM or Javadevel oper, you do not need to worry about DL process creation or
destruction. Creating a new object creates anew process for it (unless a process
aready exists and the new object is being added to it), and destroying the last object
in a process a so destroys the process.

The code for the IDL object must be available because the bridge's process layers
call it. The wrapper does not contain the IDL object, only provides an interface for it,
and if you modify the IDL object after generation of its wrapper object, the wrapper
might not work as expected. For more information, see “Modifying a Source Object
After Export” on page 173.

Note
See “Configuring Build and Client Machines’ on page 135 for information on
setting up machines for building and using wrapper objects.

Note
Stock wrapper methods allow you to work with IDL processes. For COM, see
“GetProcessName” on page 194 and “ SetProcessName” on page 196. For Java, see
“getProcessName” on page 217 and “ setProcessName” on page 220. To take effect,
you must set a process name before creating an object in order for the object to exist
in that process.

Consider the following diagram:

IDL Access IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 127

Client Process
10L Process: X
EB ap per et a1
Obj A nc IDL Obj: A
Mame: ¥ \ W&'E?'LEF ™ hstance #1
EB w3
ObjB hstance #1 DL Ob: B
Process Mame: ¥ "-“-'I:"EIJ_:'IEEF ™ hstance #1
EB ap per -
Obj C hui;;'lﬁe #1 I0L Okj: C I0L Process: ¥
Processhame: ¥ \ Db?l:ll;r 7| hstance #1
hstanee #2 f
| oL ob:
WI:"EE'FI?F hstance #2
h=tance #3 10L Obj: C
Mrapper & hztance #3
Obj ©
EH ;E_EEPEF hemnce #1 I0L Process: =
Il 10L Obj: D
ProcessMame: Z \ m::"EIj:'FBEr * hstancfa #
EB ap per
Obj E htance #1 IDL Obj: E
ProcessName : Z "'""::"Elj?l:l'zer nstance #1

Figure 6-1: Example of Wrapper and Process Use

In the diagram, the client has created instances of several different wrapper objects:
A, B, C, D, and E. Wrapper objects A and B have their process name set to X, and
thus all instances of A and B cresate their underlying IDL objectsin the same IDL
process called X. Wrapper object C uses a different process, Y. Since there are three
instances of the same wrapper object C, there are three instances of the IDL object C
created in the process, Y. Wrapper objects E and D use an entirely different

process, Z.

IDL Connectivity Bridges IDL Access

128

Chapter 6: Exporting IDL Objects

IDL Ownership and Blocking

IDL Access

During amethod call, the client-side wrapper object instance becomes the owner of
the IDL process that contains the underlying IDL object and remains the owner until
the method call returns. An IDL process can only have one owner at atime. If thereis
acurrent owner of an IDL process and another wrapper object attempts to access the
same IDL process, an IDL busy indication is returned through the wrapper object.

COM and Java handle error conditions differently: COM method calls return an
HRESULT error value, whereas Java method calls throw an exception. In COM, this
resultsinan IDL_BUSY condition; however, in Java, the requests are queued so that
no busy condition occurs. See “Error Handling” on page 200 (COM) and “Error
Handling” on page 230 (Java) for more information.

However, if one wrapper object instance owns a particular IDL process, another
client processis free to make calls on other wrapper object instances that map to
different IDL processes. In other words, the client can have multiple method calls
executing at the same time as long as each method call maps to a different process.

For example, using the diagram in Figure 6-1, if Instance #1 of wrapper object A is
the current owner of the IDL process named X, and then another thread callsa
method on Instance #1 of wrapper object B, it will return an IDL busy error, since it
will try to use the same process as the wrapper object A. However, another thread can
call amethod on any instances of wrapper objects C, D, and E since they map to a
different processes that are not currently owned.

IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 129

Parameter Passing and Type Conversion

The following topics contain important information that must be kept in mind when
passing objects, arrays and variables between IDL and an external programming
environment:

e “Object Reference Use” below
e “Array Order Conversion” on page 130
* “Type Conversion” on page 130

Object Reference Use

It is possible to pass an object reference to another wrapper object as a method
parameter, with the following restrictions.

* The object reference must be areference to another Export Bridge wrapper
object instance of the same wrapper language type (COM or Java) — that is,
COM to COM or Javato Java

* You cannot passin object references to non-Export Bridge wrapper objects

* Theobject referenceis“in-only,” meaning that methods and properties cannot
return or modify areference to an abject

« Both objects (the object being referred to and the object using the reference)
must have their underlying IDL objects contained within the same IDL
process.

For example, using the diagram in Figure 6-1, wrapper object A can have a method
that takes an object reference. But the only valid object reference that can be specified
isto an instance of wrapper object B, since both have their underlying IDL objects
living in the same process, X.

If you attempt to passin an object reference to an IDL object contained in different
processes, the method call returns an error. An error isalso returned if you attempt to
pass in an object reference that does not reference an instance of an Export Bridge
wrapper object.

Arrays of Object References

You can also create an array of object references aslong as all the objects being
referenced are in the same IDL process as the object using the array.

IDL Connectivity Bridges Parameter Passing and Type Conversion

130

Chapter 6: Exporting IDL Objects

When creating an array of object references for COM, it must be defined as a
SAFEARRAY of variants, with each variant containing the IlUknown or 1Dispatch
pointer to a COM or ActiveX wrapper object instance.

When creating an array of object references for Java, it must be defined asa
JDLArray containing an array of JIDLObjectl references.

Array Order Conversion

A method parameter or property value can be an array. When dealing with
multidimensional arrays, one must always be aware of the array ordering. See
“Multidimensional Array Storage and Access’ on page 521 for acomplete discussion
of the issues.

However, you must take into account the array ordering of the client-side array and
the array order expected by IDL. The wrapper objects will convert array ordering
when designated to do so in the Export Bridge Assistant. During wrapper object
construction, the Export Bridge Assistant |ets you designate a method parameter as
an array and then indicate if the array needs to be converted (see “ Converting Array
Majority” on page 157 for details). If the array parameter is marked for conversion,
the client array is converted during the method call before being sent to the
underlying IDL object. If the parameter is aso marked with In/Out mutability
(meaning that the parameter is not constant and can be set by the caller and pass the
value back to the caller), the array is also converted on the way back to the client. For
more information on mutability, see “Parameter Information” on page 168.

However, there are certain cases where arrays are automatically converted and the
user does not have the option to designate conversion. When calling the
GetldlVariable and SetldlVariable methods on awrapper object, or when an IDL
function returns an array value, the array is always converted into the order expected
by COM. (For Java, the user has the option to designate conversion.)

Type Conversion

IDL isadynamically typed language that |ets variables change type after creation.
Javaand COM are strongly typed languages, which require a variable to be given a
fixed type when it is created. This difference can lead to type-conversion errors
during method calls because the IDL object can redefine the datatype of a parameter.
When a method parameter is marked In/Out, the updated parameter value is returned
to the client upon return of the method. During the method return, the wrapper
compares the data type of the input value against the data type of the output value.

Parameter Passing and Type Conversion IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 131

The wrapper will perform aloose type conversion in which:

« Any scalar type can be converted to any other scalar type (e.g., ashort integer
to along integer)

* A scalar string to a scalar string (e.g., astring of one length to a different
length)

* Anarray to an array (e.g., any dimensionality and type to any other
dimensionality and type)

L oose type conversion attempts to convert the variables returned by the wrapped IDL
object to the types expected by the wrapper object.

A data conversion error is returned when the above rules are not met. For example:
» A scalar changesto astring
e A scalar changesto an array
e A string changesto a scalar
e A string changesto an array
e Anarray changesto a scalar
e Anarray changesto astring
See “ Supported Data Types’ on page 158 for data types supported by COM and Java.

IDL Connectivity Bridges Parameter Passing and Type Conversion

132 Chapter 6: Exporting IDL Objects

Event Handling

There are three main types of events that the clients of wrapper objects care about:
user-interface events (e.g., mouse click and mouse move), IDL output, and IDL
notifications. User-interface events are only available for drawable wrapper objects.
The IDL output and notifications are available for drawable and nondrawable
wrapper objects. The mechanism for the clients to receive wrapper-object eventsis
different for the different wrapper-object languages, as described in “ Event
Handling” on page 197 (COM) and “Event Handling” on page 221 (Java).

An IDL notification isaway for an IDL object to relay information back to wrapper
object instances while in the middle of amethod call. This can be used for things like
updating the status of lengthy operations. In order for a wrapper object to receive an
IDL notification, the IDL object must inherit from the IDLitComponent object, and
the client must subscribe to the wrapper instance’s events. All IDL graphic objects
automatically inherit from IDLitComponent. For nondrawable objects, if the IDL
object needs to send out a notification, it must explicitly inherit from
IDLitComponent.

The IDLitComponent::NotifyBridge method sends the notification. It takes any two
strings as parameters. For example, in the pro code below, assume that the object is
derived from IDLitComponent and the user wants to inform the client of the status of
alengthy computation.

pro | DLnyQhj ect : : DoLongConput ati on
for 1 = 0, 10000000 do begin

per cent Done = Cal cPer cent Done()

; Send client sone status

sel f->NotifyBridge, 'Conpletion Status', STRI NG percent Done)
endf or

end

Note
IDL objects must derive from IDLitComponent if IDL notifications will be used.

Event Handling IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 133

Supported Platforms and IDL Modes

The IDL Export Bridge technology is available on the following platforms:

Wrapper Object Platforms Supported

Type
COM Microsoft Windows (32-hit)
Java Linux (32-bit)

Solaris (32-bit and 64-bit)

Macintosh OS X (non-drawable objects only)
Microsoft Windows (32-hit)

Table 6-1: Export Bridge Platform Support
Supported Compilers

The IDL Export Bridge requires the following compilers for building COM and Java
wrapper objects.

Wrapper Object :
Type Compilers Supported
COM Use Visual Studio 2003 for both the machine running the
Export Bridge Assistant and the machine building an
application using the wrapper objects (if different). VB.NET,
C#, C++ Managed, and C++ Unmanaged are all supported.
Java Use the Java Developer’s Kit (JDK) version 1.4.2 or 1.5

Table 6-2: Export Bridge Wrapper Object Compiler Support
Client Machine Requirements
Client machines (those running applications that incorporate a wrapper object) have

separate requirements. See “ Configuring the Machine Running the Wrapper Client”
on page 137 for details

IDL Connectivity Bridges Supported Platforms and IDL Modes

134 Chapter 6: Exporting IDL Objects

Output Destinations

Windows allows output to both COM and Java. On other supported platforms, only
Javais supported (not COM). For a COM project on hon-Windows platforms, the
Build menu in the Export Bridge Assistant is disabled.

IDL Licensing

Build machines must have an IDL license and an Export Bridge Assistant license.
Client machines must have either an licensed installation of IDL or a copy of the IDL
Virtual Machine. (Note that the ExecuteString methods are disabled for applications
running in the IDL Virtual Machine.)

Export Bridge Assistant Licensing

The Export Bridge Assistant is an IDL application. While the Assistant will run and
allow you to create export projectswith any IDL license, an additional-cost licenseis
required to build the Java or COM native wrapper objects.

The Export Bridge Assistant cannot be run in runtime mode or in the IDL Virtua
Machine. Attempting to run the Assistant in various licensing modes will have the
following effects:

* Runtime mode — the Assistant will issue an error and exit

« |DL demo mode or no IDL license — the Save and Build operations are
disabled

* No Export Bridge Assistant license — the Build operation is disabled without
an Assistant licence feature (i dl _bri dge_assi st)

Supported Platforms and IDL Modes IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 135

Configuring Build and Client Machines

This section describes how to configure build machines:
e Machinesthat run the Export Bridge Assistant

e Machinesthat use the wrapper objects created by the Assistant in an external
development environment (if different)

and client machines:

e Machines running applications that rely on wrapper objects
As adeveloper of applications that use wrapped IDL objects, you should be familiar
with all of the information in this section.

Configuring the Machine Running the Assistant

The computer that runs the Export Bridge Assistant must meet the following
reguirements:

Iltem Description

General Requirements * IDL must beinstalled.

» The DL source object does not need to be in the
IDL path to be used by the Assistant, but does to
be used by the client application (see below). Any
IDL code referenced by the source object must be
in the same directory as the source object or in
the IDL path.

» Drawable IDL objectsthat inherit from
IDLgrWindow, IDLitWindow, and
IDLitDirectWindow have special requirements
as described in “Requirements for Drawable
Objects’ on page 252.

COM Requirements Visua Studio must be installed.

Java Requirements Javamust beinstalled, andj avac must bein the
execution path.

IDL Connectivity Bridges Configuring Build and Client Machines

136

Chapter 6: Exporting IDL Objects

Note
See " Supported Platforms and IDL Modes’ on page 133 for supported COM and
Javaversions.

Configuring the Machine Using Wrapper Objects

If different from the machine running the Assistant, the machine using wrapper
objects in application devel opment must meet the following requirementsin addition
to the requirements listed for the Assistant (* Configuring the Machine Running the
Assistant” on page 135).

COM Registration Requirements

The wrapper object generated by the Assistant must be registered using r egsvr 32
<wr apper Name>. DLL for non-drawable objects or r egsvr 32
<wr apper Name>. OCX for drawable objects. To register afile:

1. Seect Start — Run, type cnd in the text box and click OK to open the
Command Prompt window.

2. Usethe cd command to change to the directory containing the file to be
registered.
3. Enterregsvr32 <wr apper Nane>. DLL or <wr apper Nane>. OCX to register
thefile.
A message box will report the successful registration of the file.

Note
If needed, you can unregister afile by using the- u flag asin
regsvr32 -u <wr apper Nanme>. DLL

See “Wrapper Generation Example” on page 174 for ashort example that exports and
usesasimple IDL object.

Java Requirements

Javamust beinstalled. Both j avac andj ava must be in the execution path.

Note
The Java runtime environment installation does not providej avac.

Configuring Build and Client Machines IDL Connectivity Bridges

Chapter 6: Exporting IDL Objects 137

For compilation and execution, the file
<RSI DI R>/ resource/ bri dges/export/java/javaidl b.jar must beinthe
Java classpath.

For Java routines to use the exported java objects, they must use the following import
statement:

i mport comidl.javaidl.*

On UNIX systems, the LD _LIBRARY _PATH environment variable

(DYLD_LI BRARY_PATH on Mac OS X) must include the IDL

bi n. <pl at f or np. <ar ch> directory. The PATH environment variable must also
include this directory.

The IDL_PATH environment variable must include the directory containing the IDL
source abject source or SAVE file. In most cases, the variable should also include the
default IDL library so that IDL routines can be resolved.

See “Wrapper Generation Example” on page 174 for ashort example that exports and
usesasimple IDL object.

The bridge_setup Script

On UNIX platforms, sourcethe<I DL_DI R>/ bi n/ bri dge_set up script to set the
appropriate values for the IDL_DIR, LD_LIBRARY_PATH, and CLASSPATH
environment variables. (The <!l DL_DI R>/ bi n directory also containsversions of this
script for use with the korn or bash shells.)

Note
On 64-hit Solaris platforms, the br i dge_set up script will specify the 32-bit
version of IDL by default, since most Solaris systems use the 32-bit version of Java
as the default. To explicitly specify that the 64-bit version of IDL should be used,
set the IDL_PREFER_64 environment variable. (The value to which this
environment variable is set is not important; if it is defined at all the 64-bit version
of IDL will be used.)

Thereisnobri dge_set up script for Windows platforms. In most cases, setting the
CLASSPATH environment variable (or specifying the class path along withthej ava
or j avac command at the command line) is the only configuration necessary.

Configuring the Machine Running the Wrapper Client
The machine running the COM or Java application that uses awrapper object must

have either alicensed version of IDL or a copy of the IDL Virtual Machine installed.
(Note that applications that use the ExecuteString method will not work in the IDL

IDL Connectivity Bridges Configuring Build and Client Machines

138 Chapter 6: Exporting IDL Objects

Virtual Machine.) Additionally, the IDL . pr o or . sav file containing the object
definition must bein the IDL path. This requirement also appliesto any IDL files
called by code in the source object.

COM Applications

For a COM application:

» Theexecutablefile (.exe), and any .dl | sgenerated during the Visual Studio
build process must be made available to the client.

e The.dlIl or.ocx file associated with a custom wrapper object must be
registered on the client machine. The client need not have Visual Studio
installed.

Note
Applications using the connector wrapper object need not register the

connector object .dl | . Thisfileisautomatically registered upon IDL
installation.

» For an application builtin a.NET language (such as Visual Basic .NET or C#),
the Microsoft .NET Framework must be installed on the client machine.

Java Applications

For a Java application:

e The Java Runtime Environment (JRE) must be installed (see “ Supported
Platforms and IDL Modes’ on page 133 for supported version information).

» Theexecutable.cl ass file must be made available to the client.

* <RSI _DIR>/resource/bridges/export/javaljavaidl b.jar mustbe
in the Java classpath.

Note
On UNIX systems, it is advisable to execute the bridge_setup script on the client
machine as part of the Java application initialization. This ensuresthat IDL is
properly configured on the client machine. See “ The bridge setup Script” on
page 137 for details.

Configuring Build and Client Machines IDL Connectivity Bridges

Chapter 7

Using the Export Bridge

Assistant

This chapter discusses the following topics.

Export Bridge Assistant Overview 140
Runningthe Assistant 141
Usingthe Assistant 142
Working withaProject 149
BuildinganObject 153
ExportinganObject 154

IDL Connectivity Bridges

Specifying Information for Exporting ... 156
Information Skipped During Export 170
Exporting a Source Object’s Superclasses 172
Modifying a Source Object After Export . 173
Wrapper Generation Example 174

139

140 Chapter 7: Using the Export Bridge Assistant

Export Bridge Assistant Overview

The Export Bridge technology lets an IDL object be accessed from Java or COM
through the use of wrapper objects. The Export Bridge Assistant helps to automate
the process of creating the Java or COM wrapper object from the IDL source object.

The Assistant obtains as much information as possible about the IDL object directly
from IDL. Since IDL isloosely typed, the return types of functions and the types of
object properties and method parameters cannot be determined from IDL. Other
information such as the output destination (Java or COM) and destination specific
properties are not available from IDL and must be specified by the user.

The Assistant lets you specify the information described above for each item that isto
be exported. Note that you can choose not to export some properties, methods, or
parameters of the IDL source object. Any items that are both fully specified and
marked for export are built in the exported Java or COM object.

The Export Bridge Assistant can produce an IDL SAVE file containing a
specification of the IDL source object that isto be exported. This SAVE file, called a
wrapper definition file, preserves the state of your work between invocations of the
Assistant. You can stop the Assistant before the specification is complete and reopen
it at alater time to continue building.

Note
There are specia requirements for IDL source object that are to be exported
including datatype limitations, structural requirements, and methods that need to be
included for drawable objects. See Chapter 11, “Writing IDL Objects for
Exporting” for complete details.

Platform Support and Machine Configuration

See “ Supported Platforms and IDL Modes’ on page 133 for information on the
platforms on which you can use the Export Bridge Assistant to create wrapper
objects. See “ Configuring Build and Client Machines’” on page 135 for details on
configuring computers to build and run wrapper objects.

Export Bridge Assistant Overview IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 141

Running the Assistant

You can start the Export Bridge Assistant from the IDLDE using the M acr os menu
command or from the command line.

Running from the Macros Menu

The Macros — Export Bridge Assistant command launches the Assistant with no
keywords. With no keywords supplied, the Assistant starts without opening a project.

Running from the Command Line
You can use the IDLEXBR_ASSISTANT command to launch the Assistant. For

more information, see “IDLEXBR_ASSISTANT” in the IDL Reference Guide
manual.

IDL Connectivity Bridges Running the Assistant

142

Using the Assistant

You can use the Export Bridge Assistant to create COM or Java wrapper objects from

Chapter 7: Using the Export Bridge Assistant

native IDL objects. The Assistant is a system-wide dialog; for information on
launching it, see “Running the Assistant” on page 141.

il Export Bridge Assistant =] E3
File Edit Build Help
=]

Change log | Export Iogl Build Iogl

welcome to the Export Bridge Assistant. ;I

'r'ou can uze the assistant to build a Java or COM object

from an IDL object. The azzistant retrieves information

zuch az method names and parameter names from the [DL object,
and then you can specify the remaining information needed

ta build the native object, such as data twpes of functions

and parameters.

To start a new project, select one of the following menu options
and zpecify the IDL source object [either a .pro or .sav file containing
the object definition file].
File->Mew project-»Java...
to create a Java object or
File->Mew project-»COM. ..
to create a COM object.

The assistant will dizplay a tree view of the DL source object's
properties, methods, and method parameters. Select items in the tree
and modify properties in the property sheet to complete the specification
of selected items.

Mot all methods or parameters need to be exported. Once the desired
items are fully specified and marked for export, you can uze the
Build Object menu to create the native Java or COM object.

Changes made in the assistant are listed below.

L o

Figure 7-1: The Export Bridge Assistant When Launched

Figure 7-1 shows the Assistant when it is first launched, without a project open.

Using the Assistant

IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 143

Understanding the Assistant Interface

The Assistant consists of three panels, amenu bar, and atoolbar. The panelsare atree
view of the current project (if any), a property view of the current selected item (if
any), and aview of the three informational logs available in the Assistant.

The Menu Bar

The following menus appear on the Assistant menu bar:

« File
+ Edit
e Build
e Hep

The File menu, shown in Table 7-1, containstools for creating, importing, exporting,
and saving macros.

Menu Selection Function

New Project For COM or Java (selected in a sub-menu), creates a new
project by selecting an IDL sourcefile (. pr o) or SAVE file
containing an object definition. See “Working with a Project”
on page 149 for details.

Open Project... Opens an existing project. See “ Opening a Project” on
page 149 for details.

Close Project Closes the current project, prompting you to save any unsaved
changes.

Save Project Saves the current project to an IDL SAVE file. If the project

has not been previously saved, the behavior matches that of
SaveProject As... (below). See* Saving aProject” on page 149
for details.

Save Project As... Prompts you to select a name for the project’s IDL SAVE file.
See “ Saving a Project” on page 149 for details.

Revert To Saved Prompts you to discard changes made to the current project
and revert to its most recent saved version.

Table 7-1: The File menu

IDL Connectivity Bridges Using the Assistant

144

Chapter 7: Using the Export Bridge Assistant

Menu Selection

Function

Update From Source...

Prompts you to select an IDL source file or SAVE file
containing an object definition, which is compared to the
source object in the current project. See “Updating a Project”
on page 150 for details.

Save Log...

Saves the contents of the current log (change, export, or build).
The menu selection’s name changes to reflect that of the
current log (e.g., Save Change Log...). See“The Logs Panel”
on page 146 for details.

Closes the Assistant, prompting you to save any unsaved
project changes.

Table 7-1: The File menu

The Edit menu contains only one operation: Clear L og, which clears the contents of
the current log (change, export, or build). The operation’s name changes to reflect
that of the current log (e.g., Clear Change Log). See “The Logs Panel” on page 146

for details.

The Build menu contains only one operation: Build Object, which builds the current
object. See “Building an Object” on page 153 for details.

The Help menu opens the online help for the following topics:

e Using the Export Bridge Assistant

« Configuring the Export Bridge Assistant
e Exporting IDL objectsto COM and Java
e Using exported COM objects

e Using exported Java objects

* HelponIDL
The Toolbar

The following buttons appear on the Assistant toolbar:

e Open Project

e Save Project
» Build Object

Using the Assistant

IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 145

These buttons match the menu operations of the same name. See“ The Menu Bar” on
page 143 for details.

The Project Tree View

The project tree displays a hierarchical view of the project and the contained IDL
source object with its properties, methods, method parameters, and superclasses. (See
“Specifying Information for Exporting” on page 156 for more information.) Clicking
on an item in the treefillsin the property sheet for that selected item.

Multiple selection is enabled. This can be very useful for setting object properties
efficiently. A property isonly applied to a selected item if it implements the property,
alowing a selection to span disparate items.

El{ﬂ |DL E=port Bridge Project for Java
=25 idlitdirectwindowexarnple

5] Methods

=155 Superclasses

E{ﬂ IDLITDIRECTWINDOW
=25 Properties
- B wWINDDW_INDEX
-5 Methods

Figure 7-2: The Project Tree View of the Export Bridge Assistant

The icons next to itemsin the project tree indicate their readiness for export to a
wrapper object. For more information, see “Exporting an Object” on page 154.

IDL Connectivity Bridges Using the Assistant

146 Chapter 7: Using the Export Bridge Assistant

The Property Sheet View

The property view displays the properties of items selected in the project tree view.
You can change the properties using this view. Multiple selection is not enabled.

WAMDIDW_[MDE
Type JIDLMumber
Bray Falze
Convert majority | True
E xport True

Figure 7-3: The Property Sheet View of the Export Bridge Assistant

The Logs Panel

The logs panel has three tabs: Change Log, Export Log, and Build Log.
The Change Log

Thistext field initially contains welcome text that is cleared when a project is created
or closed. When aproject is open, the field displays arunning log of property settings
made by the user, including property changes and the following actions: Save Project,
Update From Source, and Revert To Saved Project. Figure 7-4 shows an example of a
changelog in progress.

Thetext is saved with the project, and when an existing project is opened, itisre-
displayed.

Change log | Export log | Build lng |

STYLE: Type: JIDLMurmber

STYLE: Amray: Falze

TESTARGTIMLOMG: Mutahility: 1n
TESTARGTIMLOMG: Type: JIDLMurmber
TESTARGTIMLOMG: Array: Falze
TESTFUMCTIONZ: Return twpe: JIDLMurmber
TESTFUMCTIOMNZ: Arrayw: Falze

Figure 7-4: The Change Log of the Export Bridge Assistant

Using the Assistant IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 147

The Export Log

Thistext field contains a description of the items that are to be exported (those items
that are both fully specified and marked for export). It is cleared when a project is
created or closed. Figure 7-5 shows an example of an export log in progress.

The text is saved with the project, and when an existing project is opened, it isre-
displayed.

Change log Export log | Build Iu:ugl

The following items are both marked for expart and
fully zpecified.

IDLEXBERTEST1
Froperties
STYLE
Methodz
TESTPROCEDURETRULT
TESTARGTIMLOMG
TESTFUMCTIOMZ

Figure 7-5: The Export Log of the Export Bridge Assistant
The Build Log

Thistext field displays the results of the build operation. It is cleared when a project
is created, opened or closed. Figure 7-6 shows an example of abuild log in progress.

IDL Connectivity Bridges Using the Assistant

148 Chapter 7: Using the Export Bridge Assistant

The text is saved with the project, and when an existing project is opened, it isre-
displayed.

Change log | Export log Build Iu:ugl

The output directary is:
C:\work spacetid B34 bridgeiwizard\test
The fallowing files have been generated:

idlexbrteszt] Sidlexbrtest] . java
idlexbrteszt] Nidlexbriest] clazs

Mate that when compiling a client application that will
uze thiz class, the Java claszpath must include the file:

<|DLDIR > frezource/bridaes/export Al avasdjavaidlb. jar

Mate that the output files are located in subdirectories
below the output directory determined from the package name:

idlexbrteszt]

Figure 7-6: The Build Log of the Export Bridge Assistant

Using the Assistant IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 149

Working with a Project

The Export Bridge Assistant works with a project that contains an IDL source object
to be exported. You can create a new project or open an existing one, modify or
update it, and save it.

Opening a Project

If you are creating a new project, you have the choice of making it COM or Java. For
both object types, you must specify the IDL source object by selecting either an IDL
sourcefile (<i dl Obj ect >__defi ne. pro) or aSAVE file containing an object
definition (<i dl Qbj ect >__defi ne. sav).

To open an existing project, you must select an existing wrapper definition file
(<i dl Obj ect >_<dest > wr apdef. sav) created by a previous invocation of the
Assistant.

Note
You can create or open a COM project on UNIX, but you cannot build any COM
objects. See “Output Destinations’ on page 134 for details.

Once the source object is specified, the IDL object is resolved. Note that the source
object file does not have to be in the path. However, any supporting or referenced
source file must be in the same directory or in the IDL path so that it can be resolved.

When the object isresolved, the Assistant populates the project tree with property
names, routine names, and parameter names from the object. You can use thisview to
specify information about the object necessary for creation of the wrapper objects.

If you create a new project or open an existing project while you already have a
project open, you will be prompted to save any changes made to the current project
before the new or existing project opens. You can cancel instead to continue working
on the current project.

Saving a Project

You can save your work in the current project at any time. The Assistant stores the
information in an IDL SAVE file. You can save a project without having an Export
Bridges license (see “Running the Assistant” on page 141 for details).

If you are saving a project for the first time, the Assistant prompts you for the SAVE
file's name and location. The default name is based on the source object class name

IDL Connectivity Bridges Working with a Project

150 Chapter 7: Using the Export Bridge Assistant

asfollows: <i dl bj ect >_<dest > wr apdef . sav, where<dest > iseither j ava
orcom

Note
Thisfilename is the default created by the Assistant, but you can save project files
in SAVE files with any name.

Updating a Project

You might have used the Assistant to generate awrapper object’s specification, make
changesto the original IDL source object, and want to merge these changes into the
existing object specification without losing the initial work done in the Assistant. You
can do this by bringing in the modified source object and having the Assistant
respond with both automated and manual update functionality.

The following list provides some common cases where an update might be useful:
» Changesto the IDL object
e Changesto method namesin IDL object, parameters unchanged
* Methods added
* Methods removed
e Method parameters added
e Method parameters removed
e Changesto object specification

* Method data modified (e.g., from function to procedure, the return type,
whether the return value is an array or not)

e Parameter data modified (e.g., parameter type, array)

When you select an object definition using the File —» Update From Source...
command, the Assistant comparesit to the object in the current project and ensures
that the object class of the file selected matches the class of the existing project.

Updating an existing project with an IDL source object redefines the project based on
the definition of the source object. When applicable, attributes from the existing
project are applied to matching items from the update. This application takes place
both automatically in the Assistant and manually through interaction with a dialog
that launches to guide the update.

First, the project tree is popul ated with routine names and parameter names from the
updated source (the master). Next, information from the IDL source object is

Working with a Project IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 151

compared to the existing definition. Property, method, and parameter information is
copied when the item is present in both existing definition and the updated source
object. The matching functionality istriggered if there are both added and removed
methods. The matching dialog is displayed (if applicable) so you can match names of
methods that were renamed. If matched, parameter information that matches exactly
is copied to the new wrapper definition.

The following dialog shows a method that has been renamed in the updated source
(marked with'_CHANGED'). The method TESTPROCEDUREIMULT from the old
methods has been linked to the new method
TESTPROCEDUREIMULT_CHANGED, which updates the display of linked
methods.

Export Bridge Assistant Update : Resolye Method Differe ﬂ

Old methodz Mew methods

FUMCTIOMME"W

[Link Methods
Linked Methods

TESTPROCEDUREIMULT ==: TESTPROCEDLURETMULT CHANGED |

nlink zelected

Cancel | Done |

Figure 7-7: The Export Bridge Assistant’s Update Dialogue

IDL Connectivity Bridges Working with a Project

152 Chapter 7: Using the Export Bridge Assistant

Table 7-2 summarizes the details of object modification and project update.

. Eff f . .)
Object . _ect_o . Manual Action Automatic Action
e Modification in
Modifications . Taken Taken
Assistant

Method renamed, Both Methods Added Object method added, | New method added,

parameters and Methods Removed | object definition information from old
unchanged aretrue method missing; you | method copied to new
can match old method | method, old method
name with new removed.
method name
Method added Object has a method If Methods Removed | New method added
not in the project is false, add method,;

otherwise, seethe
method-renamed
information (above)

Method removed Object lacksamethod | If Methods Added is | Old method removed
in the project false, remove method;
otherwise, seethe
method-renamed
information (above)

Parameter renamed | N/A None New parameter added,
old parameter removed

Parameter added Updated object has a None New parameter added
parameter not in the
project

Parameter removed | Object lacks a None Old parameter
parameter in the project removed

Property added Updated object has a None New property added
property not in the
project

Property removed | Object lacks aproperty | None Old property removed
in the project

Table 7-2: Resolving an Update from Source in the Export Bridge Assistant

Working with a Project IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 153

Building an Object

To build awrapper object, you need to create an object specification about the
exported object in the Export Bridge Assistant. Thiswrapper object iswhat your
client application needs to use the IDL source object’s functionality.

Note that the wrapper object is only an interface between your client application and
the IDL source object. That is, the Assistant does not include the entire IDL object in
awrapper object generated from it, but creates a COM or Java layer to interact with
the source object. Furthermore, if you change the source object, you might affect an
existing wrapper object exported from it (see “Modifying a Source Object After
Export” on page 173).

Important topics regarding building an object include the following:

» Understanding the object status for exporting (*“ Exporting an Object” on
page 154)

« What information you need to specify when exporting an object (“ Specifying
Information for Exporting” on page 156)

* Javaand COM types supported by the Export Bridge technology (*“ Supported
Data Types’ on page 158)

* What gets skipped for exporting (“Information Skipped During Export” on
page 170)

* How to export superclasses (“ Exporting a Source Object’s Superclasses’ on
page 172)

* What to do with amodified object after exporting (“Modifying a Source
Object After Export” on page 173)

IDL Connectivity Bridges Building an Object

154 Chapter 7: Using the Export Bridge Assistant

Exporting an Object

The Assistant lets you set data types for parameters and other values needed for
creation of the wrappers. In addition, the interface for the Assistant indicates visually
the progress made so far. The icons representing properties, methods, and parameters
in the assistant indicate the following:

* Which parts of the source object will be used:
e Methods that will be exported
* Methods that will be not be exported
« Which parts of the source object are completed:
e Methodsthat are fully specified
e Methods requiring further information

These two aspects of the state of the source object are independent from one another.
For example, a method might be fully specified, but Export could be False because
you want to test the exported object without generating the method. You might want
to set Export to True for several methods, fill out the information for only some of
them, and then create the exported object. The wrappers would be generated only for
those items that have Export set to true and are fully specified.

Note

Changing the export or completion status of a parameter could affect the status of
the method containing the parameter.

To make the process as simple as possible, default values and behaviors have been
specified when possible. For example, all methods start out with Export set to False,
but as soon as you specify information, such as areturn type on the method, the value
of the Export property is set to True. (For more information, see “About the Export
Property” on page 157.)

Exporting an Object IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 155

The project treeiconsindicate the status of an item. The icons shown below represent
al of the permutations of the states described above.

Meaning Icons
Export is False, Incomplete * Method: O
(initial default) .

Property or parameter: []
Export is True, Incomplete * Method: (&

* Property or parameter: [B
Export is False, Fully Specified * Method: Q)

* Property or parameter: [
Export is True, Fully Specified * Method: @

* Property or parameter: [B

IDL Connectivity Bridges Exporting an Object

156 Chapter 7: Using the Export Bridge Assistant

Specifying Information for Exporting

When the Assistant creates anew project, it supplies default values for the attributes
that must be specified. Most of these values are set to UNSPECIFIED to indicate that
you must modify this attribute. Some attributes do not have a default value because
there is no reasonable one; also, supplying a default value could cause the wrappers
to be built with incorrect values.

The one value that is set by default in most casesis the Convert Maority flag, used if
the value is an array. The default setting for this attribute (True) provides the most
expected behavior. For more information, see “ Converting Array Majority” on

page 157.

Note that in the IDL language, parameters are optional, so the Assistant does not
require the user to export every parameter that is retrieved from the IDL source object
and presented in the Assistant. It is up to the user to decide which parameters should
be exported. This might require defensive programming in the IDL source object to
ensure that parameters are not used if they are not supplied.

Information that can be specified includes:

e “Bridge Information” on page 159 — defines general wrapper object
information, the output directory, package name (Java only) and GUIDS
settings (COM only)

e “Source Object Information” on page 162 — indicates whether the object is
drawable or not (this cannot be changed)

* “Property Information” on page 163 — definesthe property datatype, whether
itisan array (and the array majority if it is), and whether or not it isto be
exported

« “Method Information” on page 165 — defines the export characteristics of a
procedure or function method, and defines the return value datatype and array
characteristicsif the method is afunction

e “Parameter Information” on page 168 — defines the mutability, data type,
array characteristics and export selection for method parameters

Note
See " Parameter Passing and Type Conversion” on page 129 for important
information about passing objects, arrays and variables as parameters.

Specifying Information for Exporting IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 157

About the Export Property

Thefirst (and only the first time) any attribute of a property, method, or parameter
other than Export is set, the item has its Export property set to True. This behavior is
provided as a convenience.

Converting Array Majority

The Convert Mgjority property may be an option for a property, function return value
or method parameter that is defined as an array (the Array property isTrue). Therules
for the Convert Mgjority property vary depending on destination (COM or Java) and
whether the array is aproperty value, function return value or method parameter. The

settings and default values are described in Table 7-3.

Where to Specify

Can Specify in COM?

Can Specify in Java?

Get Property

No (arrays always converted)

Yes (default isto convert)

Set Property

Yes (default isto convert)

Yes (default isto convert)

Function return values

No (arrays always converted)

Yes (default is to convert)

Procedure parameters

Yes (default isto convert)

Yes (default isto convert)

Table 7-3: Rules for Specifying the Convert Majority Property

See the following for more information on these rules:
» Table 7-8 in“Property Information” on page 163
» Table7-10 in “Method Information” on page 165
e Table7-11in“Parameter Information” on page 168

Note
For COM wrappers, you could theoretically set the Convert Majority flag for the
property setting call but not the property retrieval call. In practice, the Assistant uses
one flag to control the Convert Mgjority setting for both Get and Set Property, and
so for COM, the setting for properties is always Convert Mgjority, which is set to
True and disabled.

For more information on array majority, see “Multidimensional Array Storage and
Access’ on page 521. Also see “Array Order Conversion” on page 130.

IDL Connectivity Bridges Specifying Information for Exporting

158

Chapter 7: Using the Export Bridge Assistant

Supported Data Types

The following data types are supported with the Export Bridge technology.

COM » Unsigned char ULONGLONG
» Char Float
» Short Double
* Unsigned short BSTR
* Long IUnknown*
» Unsigned long VARIANT
+ LONGLONG

Java e JIDLNumber
» JDLObjectl
e JIDLString

Note

See Appendix A, “IDL Java Object API” for information on JIDL* objects.

Specifying Information for Exporting

IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 159

Bridge Information

The project has general information about the bridge being used (COM or Java).

Ea IDLITDIRECT WIMD 0w
=-E39 Properties

IDL Expart Bridge Praject for Java
Source object classname |idlitdirectwindowerample
Output clazzname idlitdirectwindowexample
Process name Default_Process Mame
Output directory C:hwwork spacet
Package name idlitdirectwindowexampls

Figure 7-8: The Export Bridge Assistant: General Bridge Information

Table 7-5 describes the general bridge information’s properties and values

Property

Value

Name

Defaultsto “IDL Export Bridge Project for <dest>" where
<dest>is“COM” or “Java.” Displayed in the sheet header only,
it is distinct from the project filename and source object
classname and cannot be modified.

Source object classname

Specified by selection of IDL object definition file. Thefile
must be selected, rather than specification of the object by
name only. Because this value is obtained from the source
object filename, the capitalization is the same as the filename.

Output classname

Defaultsto IDL source object class name; must be non-null and
avalid IDL identifier. Because this value is obtained from the
source object filename, the capitalization is the same as the
filename.

Process name

Defaultsto ‘Default_Process Name'; must be non-null and
valid IDL identifier

Output directory

Defaultsto location of source object file (. pro or . sav);
independent from location of project file and source file (except
for initial default to source location).

Table 7-4: General Bridge Information’s Properties

IDL Connectivity Bridges

Bridge Information

160 Chapter 7: Using the Export Bridge Assistant

The other properties displayed for the project depends on which bridge it is using:
COM or Java. The following describes COM-specific values.

|DL Export Eridge Project for CORM
S ource object classname pdlexbrtest]
Output classhame idlexbrtest]
Process name Default_Process_Mame
Dutput directony C:wwork spacetidlE 3t bridgetwizard test
Fegenerate GUID: Falze

Figure 7-9: The Export Bridge Assistant: COM Bridge Information

Property Value

Regenerate GUIDs On the first build operation, GUIDS are aways generated, so
this property is desensitized until after the first build. On
subsequent builds, if Regenerate GUIDs is False, the existing
GUIDs are used, alowing a devel oper to use the newly built
object without re-registering. If Regenerate GUIDs is true,
new GUIDS will be created during a build operation. Any time
GUIDs are regenerated during a build operation. they are
saved and can be used by setting Regenerate GUIDs to False.

Table 7-5: COM Bridge Information’s Property Values

The following describes Java-specific properties and values.

|DL Export Eridge Project for Java
S ource object classname pdlexbrtest]
Output classhame idlexbrtest]
Process name Default_Process_Mame
Dutput directony C:wwork spacetidlE 3t bridgetwizard test
Package name idlexbrtestl

Figure 7-10: The Export Bridge Assistant: Java Bridge Information

Bridge Information IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 161

Property Value

Package name Defaults to source object class name. Because thisvalueis
obtained from the source object filename, the capitalization is
the same as the filename.

This property is optional and can be blank. If blank, the Java
file and class file will be created in the output directory. If not
blank, the name is used to create one or more subdirectories
below the output directory. Period characters are separator
characters that produce a directory hierarchy in the resulting
subdirectory for the result. Each segment between period
characters must be avalid identifier.

Table 7-6: Java Bridge Information’s Property Values

IDL Connectivity Bridges Bridge Information

162

Chapter 7: Using the Export Bridge Assistant

Source Object Information

The source object for which you are making awrapper has its own set of properties.

Ea IDL Export Bridge Project for Java
[ER | idlitdirectwindowexample:

Ea IDLITDIRECTWANDOW
B2 Properties

idlitdirectwindowexample

Drawable objsct [True

Figure 7-11: The Export Bridge Assistant: Source Object Information

Table 7-7 describes the characteristics of the source object.

Property

Value

Name

Name of this IDL source object; specified when project was
created and shown in the sheet header only

Drawable object

Trueif IDL source object is a subclass of IDLitWindow,
IDLgrWindow, or IDLitDirectWindow; otherwise False.

Table 7-7: Source Object Information’s Property Values

Source Object Information

IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 163

Property Information

Each property of the source object has its own set of properties.

=4 DL Expart Bridge Project lar Java STYLE
223 ide;:b'lem. Tupe HIDLMumber
> Qs C—
& S
[TrRamsFaRENCY
i Mathods

E speart Tiue

Figure 7-12: The Export Bridge Assistant: Source Object Properties

Table 7-8 describes the properties and val ues of the source object’s properties.

Property Value
Name Name of the object’s property; shown in the sheet header only.
Type One of the types supported by the Export Bridge technology.

For thelist, see “ Supported Data Types’ on page 158.

Array Indicatesif property is of type array: Trueif itis, False
otherwise. If True, Convert Magjority is sensitive.

Convert Mgjority | Sensitiveonly if Array is True. Set to True if the property
value is an array and needs to be converted when setting the
property. (For COM, when retrieving a property value, the
majority is always converted regardless of this attribute
setting.) The default value for both COM and Javais True.

For more information, see “ Converting Array Mgjority” on
page 157.

Export Indicatesif the Assistant will export this property: Trueif it
will, False otherwise.

Table 7-8: Source Object Property Information’s Property Values

IDL Connectivity Bridges Property Information

164 Chapter 7: Using the Export Bridge Assistant

About Property Extraction

The abject properties are extracted from the IDL source object by compiling the list
of al keywords on either or both of the SetProperty and GetProperty methods of the
object.

The following factors are not used to determine source object properties:

* Whether aproperty isregistered or not (the export bridges do not require that
an object uses the component framework)

» The presence of amember variable in the source object's definition structure
« Keywordsto the object's Init method

Note that properties of built-in superclasses are not extracted (see “ Exporting a
Source Object’s Superclasses’ on page 172). To obtain wrapper routinesto get or set
a superclass property, you must add an explicit property handler to your SetProperty
and/or GetProperty methods for the superclass property.

Property Information IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 165

Method Information

Each method of the source object hasits own set of properties. Figure 7-13 displays a
procedure’s property information. Figure 7-14 displays the property information for a

function.
=1-i_3 0L Export Brdge Fropeck for Java TESTPROCEDURE1MULT
=} 42 idlexbibast] Dutpuil enethad name jTE?TPqEEEDLREWULT
-3 Prapeaities Expait True

E COLOA
STYLE
[0 tRansFARENCY
SR | Methods
=] TESTPROCEDURE TMULT

[TESTARGTIMLONG

Change log | Expart bog | Buldlog |
I

Figure 7-13: The Export Bridge Assistant: Procedure Information

Table 7-9 describes the procedure information’s properties and val ues.

Property Value

Name Name of the procedure; shown in the sheet header only.

Output Method Name | The name of the wrapper method in the wrapper object.
Defaults to the method name obtained from the source aobject,
but can be changed to reflect native platform naming
conventions and case. Regardless of the output method name,
the wrapper method will call through the Export Bridge
technology layersto the original source object method namein
the IDL object.

Export Indicates if the Assistant will export this property: Trueif it
will, False otherwise.

Table 7-9: Procedure Information’s Property Values

IDL Connectivity Bridges Method Information

166

Chapter 7: Using the Export Bridge Assistant

EH_§ IDL Export Bridge Project foe Java
= _1||:|m-d:||le:|':
=iy Froperes
O rcowor
[s1rLE
[0 tRansParEMCY
=y Method:
E-{8 TESTPROCEDURE IMULT
E TESTARGTIMLONG
TESTARG2OUTSTRING
=@ TESTPROCEDUREZ
O PoSITIOMALFSRAMT
O FosITIOMALPARAM2
_REGISTERPROFERTIES
=) TESTEUMCTIONTDN
B TESTARGUNLONG
[TEsTARGZOUTFLOAT

TESTARG1
[TESTARG2

TESTFUNCTIONZ
Output method name {TESTFUNCTIONZ

Aetuin lyps JIDLMumber
| oo

orvvert majonby
Espot [T

Change lag le-:ntl:ql Build h;ll

TESTFUMCTIONIDN: Retum tppe: JIDLMumbes
TESTFUNCTIONIDRN: Amay: True
TESTARG1INLONG: Type: JIDLMNumber
TESTARGTIMLONG: Aray True
TESTARGTIMLONG: Mutabiby: In
TESTFUMCTIONZ Export: Tiue
TESTFUMCTIOMIDN: Export: False
TESTFUMCTION1DN: Retum type: UNSPECIFIED
TESTFUMCTIONZ: Retun typs: JIDLNumbsr
TESTFUMCTIONZ Anay Falsa
TESTFUNCTIONIDN: Export: True
TESTFAOCEDUREZ Export: Tiue
TESTFUNCTIONIDN: Export: Falze

Figure 7-14: The Export Bridge Assistant: Function Information

Table 7-10 describes the function information’s properties and values. In addition to
the values that can be specified for procedure methods (Table 7-9), the following can

also be defined.
Property Value
Return Type One of the types supported by the Export Bridge technol ogy.
For the list, see * Supported Data Types’ on page 158.
Array Indicates if property is of type array: Trueif itis, False

otherwise. If True and the destination is Java, Convert
Magjority is sensitive.

Table 7-10: Function Information’s Property Values

Method Information

IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 167

Property

Value

Convert Mgjority

Sensitive only if Array is True and the destination is Java. Set
to Trueif the property value is an array and needs to be
converted when setting the property. (For COM, when
retrieving a property value, the mgjority is always converted
regardless of this setting, which is why this property does not
appear with COM.) The default valueis True.

For more information, see “ Converting Array Mgjority” on
page 157.

Table 7-10: Function Information’s Property Values (Continued)

IDL Connectivity Bridges

Method Information

168 Chapter 7: Using the Export Bridge Assistant

Parameter Information

Each parameter of the source object’s methods has its own set of properties.

Note
If amethod parameter has its Export property set to True, all parameters of the
method to the left of the current parameter are marked for export aswell so asto not
leave holes in the parameters list and cause parametersto be out of sequence.

If aparameter hasits Export property set to False, all parametersto the right will
aso have their Export property set to False. If a parameter has its Export property
set to True, the parent method will have its Export property set to True.

|- DL Expert Bnidge Project forJava TESTARG1IMLONG
-2y idleshrtest] Mutabibty fIr
=13 Propeitie: Type WIDLMumber
g oo
O TRansPareMCY ver maon :
==y Methods Expoat Tiue
=@ TESTPROCEDURETMULT Cha | .
nge log | Expont hgl Euldhgl
[® TESTARGIMLONG ,

Figure 7-15: The Export Bridge Assistant: Parameter Information

Table 7-11 describes the parameter information’s properties and val ues.

Property Value
Name Name of the procedure; shown in the sheet header only.
Mutability Either In or In/Out. Use In for parametersthat are constant (In-

Only, meaning that their values cannot be changed). Use
In/Out for parameters that are not constant and require avalue
to be passed back to the caller (can be In/Out or Out-only).

Return Type One of the types supported by the Export Bridge technology.
For the list, see “ Supported Data Types’ on page 158.

Array Indicates if property is of type array: Trueif itis, False
otherwise. If True, Convert Mgjority is sensitive.

Table 7-11: Parameter Information’s Property Values

Parameter Information IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 169

Property Value

Convert Mgjority | Sensitiveonly if Array is True. Set to True if the property
value is an array and needs to be converted when setting the
property. The default value is True.

For more information, see “ Converting Array Majority” on
page 157.

Export Indicatesif the Assistant will export this property: Trueif it
will, False otherwise.

Table 7-11: Parameter Information’s Property Values (Continued)

IDL Connectivity Bridges Parameter Information

170 Chapter 7: Using the Export Bridge Assistant

Information Skipped During Export

The Assistant skips certain information when creating an object specification for
exporting because such information is unnecessary or unavailable for a wrapper
object.

Lifecycle Methods

Thelifecycle methods of the IDL source object, Init and Cleanup, are not presented in
the list of methods to export in the Assistant. These methods are called through the
bridge when the wrapper object stock methods createObject and destroyObject are
called. (Note that Java capitalization is used here, COM names are different.) It is not
useful to export awrapper method explicitly for either of these routines.

For information on the stock methods, see “ Stock Wrapper Methods” on page 184
(COM) and “ Stock Wrapper Methods” on page 208 (Java).

Get Property and Set Property Methods

The GetProperty and SetProperty methods of the IDL source object are not presented
inthelist of methods to export in the Assistant. These methods will be called through
the Export Bridge when the wrapper object routines for setting or retrieving aspecific
property are called. It is not useful to export awrapper method explicitly for either of
these routines.

Drawable Object Event Handlers

For drawable objects (abjects subclassed from IDLitWindow, |DLgrWindow, or
IDLitDirectWindow) as well as IDLitDirectWindow superclass itself, the following
methods are not typically needed in the exported object:

* OnEnter ¢ OnMouseDown
* OnExit * OnMouseMotion
* OnExpose ¢ OnMouseUp

* OnKeyboard ¢ OnResize

By default these methods are not presented in the Assistant for export from either the
original IDL source aobject or its superclasses.

These routines in the source object are called directly by the Export Bridge when
events are being handled, and so they are typically not needed in the exported object.

Information Skipped During Export IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 171

Exporting these routines would be unnecessary and confusing to most users since
they might assume that the methods in the exported object would be called, but under
default conditions they are unused. The sophisticated user might actually want to call
these in the client application, however, and so they can be presented in the assistant
by starting the application with the DRAWABLE_EVENTHANDLERS keyword set
(in addition to the OBJECT_FIL E keyword). See” Running from the Command Line”
on page 141 for details.

Typically, the methods found in .pr o code object definition files will appear in the
Export Bridge Assistant. Since IDLgrwindow and IDLitWindow object definition
files are built-in, they do not appear as superclasses and their methods are not
presented in the Assistant.

IDL Connectivity Bridges Information Skipped During Export

172 Chapter 7: Using the Export Bridge Assistant

Exporting a Source Object’s Superclasses

You might want to set properties or call methods that are implemented in the
superclass of the source object. The Assistant interrogates the IDL source object to
obtain the properties, methods and method parameters. It also uses the OBJ CLASS
method to obtain the superclasses of the source object class, and for each user class
a so obtains the properties, methods and method parameters. Thisisarecursive
process that requires interrogating each superclass for its superclasses. Built-in IDL
superclasses will not be included in the wrapper definition.

The routine used to extract object information, IDL's ROUTINE_INFO function, can
obtain the methods of a built-in object class. However, because ROUTINE_INFO
does not provide parameter information for built-in routines, the Assistant is unable
to extract the properties (parameters to SetProperty or GetProperty) or the parameters
of object methods for abuilt-in superclass. The built-in superclasses are not presented
in the project tree view.

To obtain wrapper routines to modify properties of built-in superclasses, you must
add an explicit property handler to the SetProperty and/or GetProperty methods for
the superclass property. To obtain wrapper routines to call methods of built-in
superclasses, you must add an explicit method to their source object that calls the
superclass method.

Exporting a Source Object’s Superclasses IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 173

Modifying a Source Object After Export

Modifications to the IDL source object can affect the operation of an existing
wrapper object even if the wrapper is not rebuilt because the wrapper object uses the
source object in its current state, not a state cached at the time the Assistant generates
the wrapper object.

In general:
e Adding properties or methods has ho impact on an existing wrapper object.

* Removing properties or methods or changing method interfaces can invalidate
an existing wrapper object.

* Modifying behavior in a property handler or method causes the new behavior
to bein effect for the next invocation of the application using the wrapper
client. This can be useful because the wrapper does not need to be regenerated
for the client to pick up IDL source modifications.

IDL Connectivity Bridges Modifying a Source Object After Export

174 Chapter 7: Using the Export Bridge Assistant

Wrapper Generation Example

Thefollowing example exportsasimple IDL object that has no properties or methods
and demonstrates the configuration necessary to initialize a COM or Java client
application to use the exported object. First, create the IDL source object.

1. Createafilenamed hel | owor | d__defi ne. pr o (within your IDL path)
containing the following code:

FUNCTION hel loworld:: INIT
RETURN, 1
END

PRO hel | owor | d__defi ne
struct = {helloworld, $
dummy: 0b $; dummy structure field, not a property
}

END

Thisisthe source object definition file that you will export using the Export
Bridge Assistant.

2. Openthe Assistant by entering IDLEXBR_ASSISTANT at the command line
or by selecting Macros — Export Bridge Assistant.

See one of the following:
e “COM Wrapper Object Generation and Use” below
o “JavaWrapper Object Generation and Use” on page 176

COM Wrapper Object Generation and Use

The following example exports and uses the hel | owor | d object in asimple Visual
Basic .NET console application. After creating the object definition file and

launching the Assistant as described in “Wrapper Generation Example” on page 174,
complete the following steps.

1. Select to create a COM export object by selecting File — New Project —
COM and browseto select thehel | owor | d__def i ne. pr o file. Click Open
to load the file into the Export Assistant.

Wrapper Generation Example IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 175

Ea |DL Expart Bridge Project for COM IDL Export Bridge Project for COM
EHEA hellowarld Source object classname |helloworld
a Propertics Dutput claszname hellowwarld
N Methods Process name Default_Process_Mame
Output directary CARSINDLES
Renenerate GUID= False

Figure 7-16: Helloworld COM Export Project

2. Thetop-level project entry in the left-hand tree panel is selected by default.
Thereisno need to modify the default properties shown in the right-hand
property panel, but you can enter different values if desired. Select the tree
view item listed in the left column to configure the related propertiesin the
right column.

Tree View Item Parameter Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

» Output classname
* Process name
» Output directory

helloworld Drawable abject equals False

Table 7-12: Example Export Object Parameters

For this simple example, the source object has no properties or methods, so
none are exported.

Note
See " Specifying Information for Exporting” on page 156 for details on
configuring export values.

3. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

4. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. For a nondrawable object, .t | b

IDL Connectivity Bridges Wrapper Generation Example

176 Chapter 7: Using the Export Bridge Assistant

and .dl | files (named based on the object name) are created in the Output
directory.

5. Register the.dl | usingregsvr32 hell oworld. dl|.See“COM
Registration Requirements’ on page 136 for detailsif needed.

6. Createanew Visua Basic .NET console application and add areferenceto the
COM library named hel | owor I dLib 1.0 Type Li brary. Select
Project — Add Reference, and click on the COM tab. Select the
hel I owor I d. dI' | and click Ok.

7. Replace the default module code with the following text:

I mports hell oworl dLib
Modul e Modul el
Di m oHel l o As New hel | owor | dLi b. hel | owor| dC ass
Sub Mai n()
Try
oHel | 0. Create(bj ect (0, 0, 0)
Catch ex As Exception
Consol e. WiteLine(oHell 0. GetLastError())
Ret urn
End Try
AddHandl er oHel | 0. Onl DLQut put, AddressOf evCQut put
oHel | 0. ExecuteString("Print, 'Hello World' ")
End Sub
Sub evQut put (ByVal ss As String)
Consol e. Wi t eLi ne(ss)
End Sub
End Mbdul e

In this example, the stock ExecuteString method is used to print the hello
world message. By adding ahandler for the Onl DL Output method, the console
application is able to capture and output the information that would typically
be printed to the Output window of IDL. After building the solution and
starting without debugging, the console window appears with the output

messages.
Java Wrapper Object Generation and Use

The following example exports and uses the hel | owor | d object in asimple Java
application. After creating the object definition file and launching the Assistant as
described in “Wrapper Generation Example”’ on page 174, complete the following

steps.

Wrapper Generation Example IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 177

1. Select to create a Java export object by selecting File — New Project — Java
and browseto select thehel | owor | d__defi ne. pr o file. Click Open to load
the file into the Export Assistant.

E@ IDL E=part Bridge Project for Java 1DL Export Bridge Project for Java
EHEY helloworld Source object classname |helloworld
a Froperties Dutput claszname hellowarld
) Methods Process name Default_Procezs Mame
Output directory C:ARSIMDLES
Package name hellowarld

Figure 7-17: Helloworld Java Export Project

2. Thetop-level project entry in the left-hand tree panel is selected by default.
There is no need to modify the default properties shown in the right-hand
property panel, but you can enter different values if desired. Select the tree
view item listed in the left column to configure the related propertiesin the
right column.

Tree View Item Parameter Configuration

IDL Export Bridge Project | Accept the default value or make changes:
» OQutput classname
* Processname

e Output directory (pathsin later parts of
this example assume thisfield equalsthe
main IDL installation directory, whichis
typically C: \ RSI'\ | DLxx on Windows)

helloworld Drawable object equals False

Table 7-13: Example Export Object Parameters

For this simple example, the source object has no properties or methods, so
none are exported.

IDL Connectivity Bridges Wrapper Generation Example

178

Chapter 7: Using the Export Bridge Assistant

Note
See “ Specifying Information for Exporting” on page 156 for details on
configuring export values.

Save the project by selecting File — Save project. Accept the default name
and location or make changes as desired.

Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. A subdirectory, named

hel | owor | d (based on the object name), containsthe .j ava and .cl ass
files, and islocated in the Output directory.

Create afilenamed hel | owor | d_exanpl e. j ava that containsthe following
code and save thefilein the hel | owor | d directory.

package hel | oworl d;

import comidl.javaidl.*;

public class helloworl d_exanpl e extends hel | oworl d
i npl erents JI DLQut put Li st ener

{
private hellowrld hwObj;
/!l Constructor
public helloworld_example() {
hwCbj = new hel | owor | d();
hwCbj . creat eoj ect () ;
hwCbj . addl DLQut put Li st ener (thi s);
hwCbj . executeString("print, '"Hello World ");
}
/1 inplenent JIDLQutputListener
public void | DLoutput(JI DLOojectl obj, String sMessage) {
Systemout.println("IDL: "+sMessage);
}
public static void main(String[] argv) {
hel | owor | d_exanpl e exanpl e = new hel | owor| d_exanpl e();
}
}
Note

By default, the Assistant generates a package so any Javaroutine using an
exported wrapper object must include the package name. The second
statement, i nport comidl.javaidl.*; isalsorequired.

Wrapper Generation Example IDL Connectivity Bridges

Chapter 7: Using the Export Bridge Assistant 179

For example purposes, the stock method executeString is called, and an output
listener isregistered to retrieve the IDL output.

The wrapper is compiled and run using the commands bel ow:
e “Windows Commands to Build and Run the Client” on page 179
e “UNIX Commandsto Build and Run the Client” on page 180

Windows Commands to Build and Run the Client

The following commands build and run this Java wrapper example on Windows.

1. Tocompileand run the Javaroutine, open the Windows Command window by
selecting Start — Run and enter cnd in the textbox.

2. Usethecd command to changeto the directory containing the hel | owor | d
directory. For a default Windows installation, the command would be similar
to the following:

cd C\RSI\IDL63

3. Referencetheclasspath of j avai dl b. j ar inthe compile statement. Enter the
following commands (each as asingle line), replacing RSl _DI Rwith the IDL
installation directory, for example RSI \ | DL63:

javac -classpath
".;RSI _DI R resource\bridges\export\java\javaidlb.jar"
hel | owor | d\ hel | owor | d_exanpl e. j ava

java -cl asspath
".;RSI _DI R resource\bridges\export\java\javaidlb.jar"
hel | owor | d. hel | owor | d_exanpl e

In both commands, the . character includes the current directory in the
classpath.

The first command usesj avac to compile the example client. The path to the
hel | owor | d_exanpl e. j ava fileis specified using a backslash character as
adirectory separator.

The second command usesj ava to run the example client. The final argument
specifiesthe package path to the hel | owor | d_exanpl e classfile. Notethat a
. character is used as a separator in the package path. The final argument to the
second command intentionally omits the suffix.

After compiling and running the project, the output message will appear in the
command window.

IDL Connectivity Bridges Wrapper Generation Example

180 Chapter 7: Using the Export Bridge Assistant

UNIX Commands to Build and Run the Client

The following commands build and run this Java wrapper example on UNIX:

source <RSI _DI R>/ bi n/ bri dge_set up
javac hel l owor | d/ hel | owor| d_exanpl e. j ava
java hell oworld. hel |l owor! d_exanpl e

Note
See “ Java Requirements’ on page 136 for more information onthebri dge_set up
file.

The source command adds the necessary directories to the dynamic library path and
the classpath.

The second command usesj avac to compilethe example client. The third command
usesj ava to run the example client. Thefinal argument specifies the package path to
thehel | owor | d_exanpl e. classfile. Notethat a. character isused as a separator
in the package path. The final argument to the second command intentionally omits
the suffix.

After compiling and running the project, the output message will appear.

Wrapper Generation Example IDL Connectivity Bridges

Chapter 8

Using Exported COM
Objects

This chapter discusses the following topics.

Overview of COM Export Objects 182 EventHandling..................... 197
COM Wrapper Objects 183 ErrorHandling 200
Stock Wrapper Methods 184 Debuggingcoviiiiiiiii... 202

IDL Connectivity Bridges 181

182 Chapter 8: Using Exported COM Objects

Overview of COM Export Objects

Once you have chosen to use a connector object or have exported a custom IDL
source object using the Assistant, use the method and event reference information
described here to create an instance of the object and interact with the IDL process
from an external COM environment.

This chapter presents important background information on using IDL objects
exported into COM:

e “COM Wrapper Objects’ on page 183
e “Stock Wrapper Methods’ on page 184
e “Event Handling” on page 197
e “Error Handling” on page 200
For examples that use the methods and events described here, see:

e “Using the Connector Object” on page 233, which describes how to use the
connector object in COM environments

¢ “Creating Custom COM Export Objects’ on page 257, which provides
examples of using custom object methods (in addition to the stock wrapper
methods) in COM environments

Overview of COM Export Objects IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 183

COM Wrapper Objects

A COM wrapper object is defined as one that wraps a nondrawable IDL object, and
an ActiveX control as one that wraps adrawable IDL object. Typically, only ActiveX
controls handle (user) events, but COM wrapper objects can also fire events so that
the client can receive IDL output and notifications.

To use a COM wrapper object, the client instantiates one or more instances of the
wrapper objects and then calls its methods and properties. An ActiveX control must
be created in a host window before its methods and properties can be called.

ActiveX controls are typically hosted on GUI forms. These forms are generally built
in a GUI-based development environment such as Visual Basic or Visual Studio
.NET. The user creates aform by dragging and dropping controls onto the form.
ActiveX controls usually interrogate the host window to determine what user mode
they arein: design or runtime. While in design mode, the ActiveX control usually
displays a static image whereas in runtime mode, the ActiveX control is executing
and dynamically drawing to the screen.

The Export Bridge ActiveX wrapper controls also check for the user mode. In design
mode, a static image with the IDL Export Bridge logo is displayed. In runtime mode,
the ActiveX control internally calls the CreateObject method, the underlying IDL
object is created, and IDL begins rendering to the ActiveX window. When the
application is stopped and transitioned back to design mode, the ActiveX control
internally calls the DestroyObject method, and the static image is once again
displayed. See “ Stock Wrapper Methods” on page 184 for information on these
methods.

Note
Not all ActiveX host windows provide the user mode. If the host window does not
provide the user mode, the Export Bridge ActiveX wrapper controls assume that
they are in runtime mode, and they immediately begin to render to the screen as
soon as they are instantiated.

IDL Connectivity Bridges COM Wrapper Objects

184

Chapter 8: Using Exported COM Objects

Stock Wrapper Methods

This section describes the stock methods in the COM wrapper objects created by the
Export Bridge Assistant:

“Abort” on page 185

“CreateObject” on page 186
“DestroyObject” on page 188
“ExecuteString” on page 189
“GetIDLObjectClassName” on page 190
“GetIDLObjectVariableName” on page 191
“GetIDLVariable” on page 192
“GetLastError” on page 193
“GetProcessName” on page 194
“SetIDLVariable” on page 195
“SetProcessName” on page 196

Every connector object and custom COM wrapper object has these methods in
addition to those defined by the wrapped IDL object.

Stock Wrapper Methods IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 185

Abort

The Abort method requests that the IDL process containing the underlying IDL
object abort its current activity. This method is useful if agiven IDL method call is
busy for avery long time (e.g., avery long image processing command).

Note
Therequest isonly that, arequest, and IDL might take along time beforeit actually
stops or might completely finish its current activity. Such await is an effect of the
IDL interpreter.

The client can only abort the current IDL activity if that wrapper object is the current
owner of the underlying IDL process.

Syntax
HRESULT Abort(void)
Parameters

None

IDL Connectivity Bridges Abort

186 Chapter 8: Using Exported COM Objects

CreateObject

The CreateObject method creates the actual underlying IDL object. The argc, argyv,
and argpal parameters are used to supply parameters to the underlying IDL object’s
Init method. If the Init method does not have any parameters, the caller sets argc,
argv, and argpal to O, NULL, and NULL, respectively.

Note
Thismethod is available for COM (nondrawable) objects only. The ActiveX control

implicitly calls CreateObject; therefore, the method is not visible on ActiveX
controls.

Syntax
HRESULT CreateObject ([in] int argc, [in] VARIANT argv, [in] VARIANT argpal)
Parameters

argc
An integer that specifies the number of elementsin the argv and argpal arrays.
argv

A VARIANT containing a COM SafeArray of VARIANT types, one for each
parameter to Init. The elementsin the array are given in order of the parameterslisted
in Init, ordered from left to right.

argpal

A VARIANT containing a COM SafeArray of 32-bit integer flag values, which can
be a combination of the IDLBML_PARMFLAG_CONST and
IDLBML_PARMFLAG_CONVMAJORITY values ORed together. The latter value
isonly used when an argv element is an array itself. For parameters that are not
arrays, the argpal[n] value must be 0.

Note
The constants above are defined in the typelib information contained within each

wrapper object.

CreateObject IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 187

Example

Note
See Appendix B, “COM Object Creation” for examples of creating objects from a
variety of COM programming languages.

The Init method of the IDL object being wrapped has the following signature:
PRO | DLexFoo: : INIT, rect, fil enane
wherer ect isan array of 4 integersand f i | enane isastring.

The COM client code that creates an instance of the wrapper object, and calls the
CreateObject() method withther ect andfi | ename parameters, would look like the
following:

CConfaf eArray<int> csa(4);
csa[0] = 0; csa[l] = 0; csa[2] = 5; csa[3] = 10;

CConVari ant argv[2];

i nt argp[2];

argv[0] = csa. Detach();

argp[0] = | DLBM._PARMFLAG_CONST;
argv[1l] = "soneFilenane.txt";
argp[1] = | DLBM._PARMFLAG_CONST;

CConPt r <I MyW apper > spW apper;
spW apper . CoCr eat el nst ance(__uui dof (MyW apper));

spW apper - >Creat eObj ect (2, argv, argp);

IDL Connectivity Bridges CreateObject

188 Chapter 8: Using Exported COM Objects

DestroyObject

The DestroyObject method destroys the underlying IDL object. If the object being
destroyed isthe last abject within an OPS process, the OPS processis also destroyed.

Note
Trying to re-create an object after it has been destroyed it is not supported. You
must re-define the variable and then re-create the object.

Syntax
HRESULT DestroyObject(void)
Parameters

None

DestroyObject IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 189

ExecuteString

The ExecuteString method executes the specified command in the IDL process
containing the underlying IDL object.

Note
This method is disabled under certain licensing scenarios. For more information,
see “Running the Assistant” on page 141.

Syntax
HRESULT ExecuteString([in] BSTR bstrCmd)
Parameters

bstrCmd

A string containing the IDL command to be executed.

Examples
See “IDL Command Line with aCOM Connector Object” on page 240 for an

example that executes any IDL command entered into one textbox and writes IDL
output or error information to a second textbox.

IDL Connectivity Bridges ExecuteString

190 Chapter 8: Using Exported COM Objects

GetIDLODbjectClassName

The Getl DL ObjectClassName method returns the IDL class name of the underlying
IDL object.

Syntax
HRESULT GetI DL ObjectClassName([out,retval] BSTR* Name)
Return Value

A string containing the class name of the IDL object.

GetIDLODbjectClassName IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 191

GetIDLODbjectVariableName

When the underlying IDL object was created in the IDL process, it was assigned a
variable name. The Getl DL ObjectVariableName method returns that name.

Syntax
HRESULT GetI DL ObjectVariableName([out,retval] BSTR* Name)
Return Value

A string containing the variable name of the IDL object.

IDL Connectivity Bridges GetIDLObjectVariableName

192

Chapter 8: Using Exported COM Objects

GetIDLVariable

The Getl DLVariable method retrieves a named variable from the IDL process
containing the underlying IDL object.

Note
This method is disabled under certain licensing scenarios. For more information,
see “Running the Assistant” on page 141.

Syntax
HRESULT GetlDLVariable([in] BSTR bstrVar, [out,retval] VARIANT* Value)
Parameters

bstrvar
A string containing the name of the variable to retrieve from the IDL process.

Return Value

Thevariable'svalues. If the variableis an array, the array is aways converted from
IDL magjority to the standard COM SAFEARRAY magjority ordering.

Examples
See “Data Manipulation with a COM Connector Object” on page 239 for an array

mani pul ation example that uses the GetlDLVariable, SetlDLVariable and
ExecuteString methods.

GetlDLVariable IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 193

GetLastError
The GetLastError method gets the error string for the last error that has occurred. It is
called after amethod call returns an error. The returned error string is usualy the
actual IDL error message, if IDL generated the error message.

Syntax
HRESULT GetL astError([out,retval] BSTR* LastError)

Return Value

The error string for the last error that occurred.

IDL Connectivity Bridges GetLastError

194 Chapter 8: Using Exported COM Objects

GetProcessName

The GetProcessName method returns the name of the process that contains the
underlying IDL object.

Syntax
HRESULT GetProcessName([out,retval] BSTR* Name)
Return Value

A string containing the name of the process that contains the IDL object.

GetProcessName IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 195

SetIDLVariable

The SetIDLVariable method sets the specified variable name to the specified valuein
the IDL process containing the underlying IDL object. If thevalueisa SAFEARRAY,
it is aways converted from the standard COM SAFEARRAY mgjority ordering to
IDL majority.

Note

This method is disabled under certain licensing scenarios. For more information,
see “Running the Assistant” on page 141.

Syntax

HRESULT SetIDLVariable([in] BSTR bstrVar, [in] VARIANT Value)
Parameters

bstrVar

A string identifying the variable in the IDL process to be set to Value.
Value

The value for the variable.

Examples

See “Data Manipulation with a COM Connector Object” on page 239 for an array

mani pul ation example that uses the GetlDLVariable, SetlDLVariable and
ExecuteString methods.

IDL Connectivity Bridges SetIDLVariable

196 Chapter 8: Using Exported COM Objects
SetProcessName
The SetProcessName method sets the name of the process that will contain the IDL
object. This can only be called before making the CreateObject call. Once the object

is created, the process name cannot be reset and calling this method after
CreateObject has no effect.

Syntax
HRESULT SetProcessName([in] BSTR Name)

Parameters

Name

A string containing the name of the process that will contain the IDL object.

SetProcessName IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 197

Event Handling

Clients subscribe to wrapper instance events through a process called advising. The
wrapper object defines an outgoing source interface (event interface) containing the
event methods, and the client implements that interface. During advising, the client
passes a reference to its event interface to the wrapper. When an event occurs within
the wrapper, it fires the event to the client by calling the appropriate event method on
the client’s event interface.

ActiveX controlsfire eventsin the classical way viaan outgoing source interface. The
Export Bridge ActiveX wrapper controls define the outgoing source interface
_DIDLWrapperEvents, as described below. Any client that wants to receive the
events must subscribe to events by calling the wrapper object’s

| ConnectionPoint::Advise() method. Once advised, the client unsubscribes to events
by calling | ConnectionPoint::Unadvise().

HRESULT Advi se ([in] IUnknown* pUnk,
[out,retval] DWORD* pdwCooki e);
HRESULT Unadvi se ([in] DWORD dwCooki e);

The client implementsthe _DIDLWrapperEvents interface and calls the wrapper
object’s Advise() method with its _DIDLWrapperEvents interface reference, and
receives a cookie for that connection. When the clients wants to disconnect, the client
calls Unadvise() with the connection cookie.

In the classical sense, only ActiveX controls fire events, which are typically Ul
events. However, aclient using an Export Bridge COM wrapper object may be
interested in IDL output and notification. So, we carry the concept of firing events
over onto COM abjects. Clients of COM wrapper objects can receive events by
advising to the same outgoing source interface in the same way that clients advise for
events on the ActiveX wrapper controls.

Mouse and Keyboard Events in COM Export Objects

For Ul events generated by ActiveX wrapper object, the client receives the eventsfirst
before IDL receives them. The client then has the option to “eat” the event and
prevent IDL from ever seeing the event. Each Ul event has aForwardToldl parameter,
which isinitially set to TRUE (1). If the event handler in the client code clears the
value to FAL SE (0), then the wrapper does not forward the event to IDL.

Note
For aCOM example that passes keyboard eventsto IDL, see “COM IDLitWindow
Surface Manipulation” on page 269.

IDL Connectivity Bridges Event Handling

198

Event Handling

Chapter 8: Using Exported COM Objects

The event interface is defined below and uses the following values. The mouse
Button parameter can have any of the following values ORed together:

| DLBM._MBUTTON_LEFT 0x1,
| DLBML_MBUTTON_RI GHT 0x2,
| DLBM._MBUTTON_M DDLE 0x4,

The KeyState parameter can have any of the following values ORed together:

| DLBM._KEYSTATE_SHI FT 0x1,
| DLBML_KEYSTATE_CTRL 0x2,
| DLBML_KEYSTATE_CAPSLOCK 0x4,
| DLBML_KEYSTATE_ALT 0x8,

For the KeyCode parameters, if the key pressed isan ASCII character, then KeyCode

isthe ASCII value; otherwiseit is one of these values:

| DLBML_KEYBOARD EVENT_SHI FT

| DLBM._KEYBOARD EVENT_CONTRCL

| DLBM._KEYBOARD_EVENT_CAPSLOCK
| DLBM._KEYBOARD EVENT ALT

| DLBML_KEYBOARD EVENT_LEFT

| DLBML_KEYBOARD EVENT Rl GHT

| DLBML_KEYBOARD EVENT UP

| DLBM._KEYBOARD_EVENT_DOWN

| DLBM._KEYBOARD_EVENT_PAGE_UP

| DLBM._KEYBOARD EVENT _PAGE_ DOWN 10

©CoOoO~NOOA~WNPR

| DLBM._KEYBOARD EVENT_HOVE 11
| DLBM._KEYBQARD_ EVENT_END 12
| DLBML_KEYBOARD EVENT_DEL 127 // isASCIl is set to 1 when
/1 this code is given
Note

The constants above are defined in the typelib information contained within each
wrapper object and are used with the _DIDLWrapperEvents interface defined
below.

di spi nterface _DI DLW apper Events

{
HRESULT OnMouseDown (long Button, long KeyState, |ong x,

long y, [in,out]long* ForwardToldl);
HRESULT OnMouseUp (long Button, long KeyState, |ong x,
long y, [in,out]long* ForwardToldl);
HRESULT OnMbuseMove (long Button, long KeyState, |ong x,
long y, [in,out]long* ForwardToldl);

HRESULT OnMbuseEnt er (void);

HRESULT OnMbuseExi t (void);

HRESULT OnKeyDown (1 ong KeyCode, |ong KeyState,
[in,out]l ong* ForwardToldl);

IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 199

HRESULT OnKeyUp (1 ong KeyCode, |ong KeyState,
[in,out]l ong* ForwardToldl);
HRESULT OnSi ze (long width, long height, [in,out]long*

Forwar dTol dl) ;

HRESULT Onl DLNoti fy (BSTR bstri1, BSTR bstr2);
HRESULT Onl DLCut put (BSTR bstrQut put);
H
Note
Since the COM wrapper uses the same event interface, only the OnlDL Notify and
OnIDL Output eventswill befired to subscribers of COM “events” The Ul eventsin

the _DIDLWrapperEvents interface have no meaning in a nondrawable COM
wrapper context, and therefore will not be fired to the client.

IDL Connectivity Bridges Event Handling

200 Chapter 8: Using Exported COM Objects

Error Handling

Each method of awrapper object returns an HRESULT value. If the method call was
successful, it returns S_OK; otherwise it returns astandard COM failure. If any of the
methods calls return an HRESULT error code, the client can then call the

GetL astError method to retrieve an error string, which is generally the actual DL
error message string.

The table below describes the error return values and their meaning when they are
returned within the context of the wrapper method calls.

Error Code Meaning

E_ACCESSDENIED | Thiserror return value occurs in one of two situations:

* IDL isbusy. The client made a method call on a
wrapper object, but the underlying IDL isstill busy
processing a previous request (method call) and
has not finished yet. For more information, see
“IDL Ownership and Blocking” on page 128.

» Theclient called the Abort method on a wrapper
object, but that wrapper object is not the current
owner of the underlying IDL; therefore it is not
allowed to abort IDL.

S FALSE The client called the Abort method on a wrapper
object, but the underlying IDL is not currently busy, so
thereis nothing to abort.

Table 8-1: HRESULT Error Codes

Error Handling IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 201

Error Code Meaning

E_ABORT This error return value occurs in one of two situations:

* Itisreturned from the original wrapper method call
whose operation was aborted by a successful call
to the Abort method.

* It occurs when the client has created severa
wrapper instances whose underlying IDL objects
al livein the same IDL process. During a method
call on one of those wrapper instances, the IDL pro
codeissuesthe IDL EXI T command. When this
occurs, the OPS process is destroyed, which also
destroys al the underlying IDL objects. However,
the client needs to be notified of this event so that
it can consider all those wrapper instances as
invalid and not use them again. First, each listener
(event subscriber) for each wrapper instances will
receive an OnlDLNotify callback with the first
string set to “OPS_NOTIFY_EXIT”. Then, the
method call (if any) that isin progress at thetime
of the EXI T command will return with the
specified error code.

Upon receiving the notification and after receiving
this error code, the user must not make any other
method calls on the wrapper instance, as the
underlying IDL object no longer exits.

E FAIL The other type of error that may be returned isa
specific IDL error. In this case, the error code will be
the same asthe IDL error code.

Table 8-1: HRESULT Error Codes (Continued)

IDL Connectivity Bridges Error Handling

202 Chapter 8: Using Exported COM Objects
Debugging

When running an application that relies on a COM wrapper object, it is often difficult
to determine when errors occur in the associated | DL object or IDL process. Since the
instance of the wrapper object isinvoked outside of IDL, the normal debugging
capabilities of the IDL Development Environment are not available.

However, it is possible to obtain this output by setting the IDL_BRIDGE_DEBUG
environment variable as described in “IDL_BRIDGE_DEBUG” in Chapter 1 of the
Using IDL manual. Thisdebug information is usually writtento st dout on Unix and
Windows (unless noted otherwise in the following table). This output can also be
captured in Visua Studio, the Debug Monitor (DBMON. exe) or WinDbg debugger on
Windows. In each instance, the output depends on the value of the
IDL_BRIDGE_DEBUG environment variable:

Value Behavior
0 Turn off debug output
1 Turn on debug output, which includes output from library load
errors, IDL execution errors, and PRINT statement output

The expected behavior in common debugging environments is described in the

following table.
Application Debug Output
Console Command window — debug information is presented in
Application line with any console window output when an .exe is

executed from the Windows command window

Visua Studio — debug output does not appear

DBMON — debug information appears in the debug
monitor window asit is generated

Table 8-2: Type and Location of Debug Information Output

Debugging IDL Connectivity Bridges

Chapter 8: Using Exported COM Objects 203

Application Debug Output
Windows Command window — no debug output since the window
Application that islaunched has no knowledge of the debugging

environment variable

Visual Studio — debug output appears in the Debug Output
window only when the application window is closed

DBMON — debug information appears in the debug
monitor window asit is generated

Table 8-2: Type and Location of Debug Information Output (Continued)

Note
In Windows, the environment variable is read when an application or command
window isinitialy instantiated. For example, if you open Visual Studio and then
change the value of the environment variable, you must re-launch Visual Studio to
see the change in debug output behavior. DBMON is an exception as it aways
listens for debug information output and immediately reflects changes in content
level.

IDL Connectivity Bridges Debugging

204 Chapter 8: Using Exported COM Objects

Debugging IDL Connectivity Bridges

Chapter 9
Using Exported Java
Objects

This chapter discusses the following topics.

Overview of Java Export Objects 206 EventHandling..................... 221
JavaWrapper Objects 207 ErrorHandling 230
Stock Wrapper Methods 208 Debugging 232

IDL Connectivity Bridges 205

206 Chapter 9: Using Exported Java Objects

Overview of Java Export Objects

Once you have chosen to use a connector object or have exported a custom IDL
source object using the Assistant, use the method and event reference information
described here to create an instance of the object and interact with the IDL process
from an external Java environment.

This chapter presents important background information on using IDL objects
exported into Java:

o “JavaWrapper Objects’ on page 207

e “Stock Wrapper Methods’ on page 208
e “Event Handling” on page 221

e “Error Handling” on page 230

Overview of Java Export Objects IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 207

Java Wrapper Objects

There are two different types of objects created by the Java Export Bridge: drawable
and non-drawable.

« Drawable wrapper objects contain a Java AWT Canvas aobject to which IDL
draws. These wrapper objects inherit from the J DL Canvas object.

« Nondrawable objects provide an interface between Javaand IDL to call
methods and pass data. However, these objects do not provide a Canvas on
which IDL can draw. They inherit from the JIDL Object object.

Note
Drawable Java objects are not supported on Macintosh OS X.

J DL Canvas objects extend java.awt.Canvas, which means that they are a
heavyweight component. They will work fine with AWT components. However,
Swing introduces the concept of lightwei ght components, which presents some issues
in Java when heavyweight objects are mixed with lightweight components. (Swing
does not provide alightweight Canvas. If Swing users require the use of a Canvas,
they use an awt.Canvas). Where possible, the JIDL Canvas attempts to work around
these problems. However, Swing devel opers should be aware of them. The following
article provides background on this problem and describes the various problems that
may occur when mixing lightweight and heavyweight components:
http://java.sun.com/products/jfc/tsc/articles/mixing/.

Javais a highly multi-threaded language, especially in GUI applications, which can
lead to problems with event handling. For example, event handling can happen in a
different thread from the main thread that started the GUI. Thus, a complicated GUI
could start processing events after the GUI has been initialized, but before the
createObject method is called to instantiate the wrapper object for client use. It is
therefore important not to start handling events before a successful object creation,
which can be accomplished by calling the isObjectCreated method available for al
Java wrapped objects to make sure the createObject call has finished successfully.

In addition to the wrapper methods created by the Export Bridge Assistant (see
“Stock Wrapper Methods’ on page 208 for details), exported Java objects have
access to the interfaces and classes included in the IDL Java package itself. See
Appendix A, “IDL Java Object API” for details.

IDL Connectivity Bridges Java Wrapper Objects

http://java.sun.com/products/jfc/tsc/articles/mixing

208

Chapter 9: Using Exported Java Objects

Stock Wrapper Methods

This section describes the stock methods in the Java wrapper objects created by the
Export Bridge Assistant:

“abort” on page 209

“createObject” on page 210
“destroyObject” on page 212
“executeString” on page 213
“getIDLObjectClassName” on page 214
“getIDLObjectVariableName” on page 215
“getIDLVariable’ on page 216
“getProcessName” on page 217
“isObjectCreated” on page 218
“setIDLVariable” on page 219
“setProcessName” on page 220

Every Java connector object and custom Java wrapper object has these methods in
addition to those defined by the wrapped IDL object.

Stock Wrapper Methods IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 209

abort

The abort method requests that the IDL process containing the underlying IDL object
abort its current activity. This method is useful if agiven IDL method call is busy for
avery long time (e.g., avery long image processing command).

Note
Therequest isonly that, arequest, and IDL might take along time beforeit actually

stops or might completely finish its current activity. Such await is an effect of the
IDL interpreter.

Note that the client can only call abort from a different thread than the one currently
executing because the method executing is, by its nature, blocked. The caller cannot
abort IDL activity that is occurring from an execution call in another wrapper object.
The client can only abort the current IDL activity if that wrapper object is the current
owner of the underlying IDL process. For more information on error return code
relating to aborting, see “Error Handling” on page 230.

Syntax
public void abort()
Arguments

None

IDL Connectivity Bridges abort

210 Chapter 9: Using Exported Java Objects

createObject

The createObject method creates the actual underlying IDL object. The argc, argv,
and argpal arguments are used to supply parameters to the underlying IDL object’s
Init method. If the Init method does not have any parameters, the caller sets argc,
argv, and argpal to O, null, and null, respectively.

The createObject method does the following:
1. It calstheInit method for the IDL object.

2. It callsthe superclassinitListeners method (either JIDL Canvas::initListeners
or JIDL Object::initListeners) to initialize any event handlers.

TheinitListeners method has default behavior, which is different for drawable and
nondrawabl e objects (see “Event Handling” on page 221 for more information). If the
default behavior is not desired, a subclass to modify the listener initialization can
override the initListeners method.

Note
Registering or unregistering listeners for events should happen in the initListeners
method or AFTER the createObject method.

Syntax
public void createObject(int argc, Object[] argv, int[] argpal)
Arguments

argc
The number of parameters to be passed to Init.
argv

The array of objectsto be passed to IDL. This array should be of length argc and
should contain objects of type JDLNumber, JIDL Objectl, JIDLString, or
JIDLATrray.

argpal

An array of argc flags denoting whether each argv parameter that is of type array
should be convolved or not. For parameters that are not arrays, the value within the
array will always be 0.

createObject IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 211

Example

The Init method of the IDL object being wrapped has the following signature:
PRO | DLexFoo: : INIT, rect, fil enane
wherer ect isan array of four integersandfi | enane isastring.

The following is an example of Java client code that creates an instance of the
wrapper object and calls the createObject method with ther ect andfi | enane

parameters:
/1l These are the Java types we want to pass to the ::Init nethod
int[] rect = {0, 0, 5, 10};
String file = "someFil ename. txt";

/1 Wap the Java types using Export Bridge data types
JIDLArray bRect = new JIDLArray(rect);
JIDLString bFile = new JIDLString(file);

/1 Create the wapper object
M/W apper w apper = new MyW apper () ;

/1 Set up paraneters to pass to createQbject
final int ARGC = 2;

hject[] argv = new Obj ect[ARG ;

int[] argp = new int[ARGC];

argv[0] = bRect;
argp[0] = JI DLConst. PARMFLAG CONST; // "in-only" paraneter
argv[1l] = bFile;
argp[1] = JI DLConst. PARMFLAG CONST; // "in-only" paraneter

/1 Create the underlying |IDL object and call
[l its ::lnit method with paraneters
wr apper . cr eat eCbj ect (ARGC, argv, argp);

Note
See Appendix C, “Java Object Creation” for additional examples of creating Java
wrapper objects with and without parameters.

IDL Connectivity Bridges createObject

212 Chapter 9: Using Exported Java Objects

destroyObject

The destroyObject method destroys the underlying IDL object associated with the
wrapper. If the object being destroyed is the last object within a process, the process
is also destroyed.

Note that this method does not destroy the actual wrapper object. Because the
wrapper object is a Java object, it follows al the Java reference-counting and
garbage-collection schemes. Once all references to the wrapper object are released
from Java code and once the VM calls the garbage collector, the wrapper object may
be deleted from memory.

Note
Trying to re-create an object after it has been destroyed it is not supported. You
must re-define the variable and then re-create the object.

Syntax
public void destroyObject()
Arguments

None

destroyObject IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 213

executeString

The executeString method executes the specified command in the IDL process
containing the underlying IDL object

Note
This method is disabled under certain licensing scenarios. For more information,
see “Running the Assistant” on page 141.

Syntax
public void executeString(String sSCmd)
Arguments

sCmd

The command to be executed.
Examples
See “IDL Command Line with Java Connector Object” on page 246 for an example

that executes an IDL command entered into one textbox and writes IDL output or
error information to a second textbox.

IDL Connectivity Bridges executeString

214 Chapter 9: Using Exported Java Objects

getIDLObjectClassName

The getl DL ObjectClassName method returns the IDL object class name of the
underlying IDL object.

Syntax
public String getl DL ObjectClassName()
Arguments

None

getIDLObjectClassName IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 215

getIDLObjectVariableName

When the underlying IDL object was created in the IDL process, it was assigned a
variable name. The getl DL ObjectVariableName method returns that name.

Syntax
public String getl DL ObjectVariableName()
Arguments

None

IDL Connectivity Bridges getIDLObjectVariableName

216

Chapter 9: Using Exported Java Objects

getiDLVariable

The getl DLVariable method retrieves the named variable from the IDL process
associated with the underlying IDL object.

Note
This method is disabled under certain licensing scenarios. For more information,
see “Running the Assistant” on page 141.

Syntax
public Object getl DLVariable(String sVar)
Arguments

sVar

The named variable to be retrieved. The returned object is of type JIDLNumber,
JIDLString, JIDLODbjectl, or JIDLArray.

If the variable is an array, the array is always converted from IDL majority to the
standard Java array majority. (For more information on implications of array
majority, see “Multidimensional Array Storage and Access’ on page 521.)

Examples

See “Data Manipulation with a Java Connector Object” on page 244 for an array
manipulation example that uses the getIDLVariable, setIDLVariable and
executeString methods.

getIiDLVariable IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 217

getProcessName

The getProcessName method returns the name of the process associated with the
underlying IDL object.

Syntax
public String getProcessName()
Arguments

None

IDL Connectivity Bridges getProcessName

218 Chapter 9: Using Exported Java Objects

iIsObjectCreated

The isObjectCreated method returns True if the object has been created successfully
and returns False if the object has not yet been created or if the object creation was
unsuccessful. This call is often useful in a multi-threaded environment to check that
an object is created before making a method call on that object.

Syntax

public boolean isObjectCreated()

Arguments

None

isObjectCreated IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 219

setiIDLVariable

The setlDLVariable method sets the specified variable name to the specified valuein
the IDL process containing the underlying IDL object. If thetypeis JDLArray, itis
always converted to IDL mgjority.

Note
This method is disabled under certain licensing scenarios. For more information,

see “Running the Assistant” on page 141.

Syntax
public void setlDLVariable(String sVar, Object value)
Arguments
sVar
A string identifying the variable in the IDL process to be set to value.

value

Thevaluefor svar. The value should be an object of type JIDL Number, JIDL Objectl,
JDLString or JIDLATrray. If the variable does not exist, it is created.

Examples
See “Data Manipulation with a Java Connector Object” on page 244 for an array

mani pul ation example that uses the getlDLVariable, setIDLVariable and
executeString methods.

IDL Connectivity Bridges setIDLVariable

220 Chapter 9: Using Exported Java Objects
setProcessName
The setProcessName method sets the name of the process that will contain the IDL

object. Thiscan only be called before making the createObject call. Once the object is

created, the process name cannot be reset and calling this method after createObject
has no effect.

Syntax
public void setProcessName(String sProcess)
Arguments

sProcess

A string containing the name of the process that will contain the IDL object.

setProcessName IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 221

Event Handling

Eventsin Java are handled by registered listener objects (often referred to as the
Observer design pattern). The object interested in listening to a given event must
implement the proper Java interface and then register to receive the events.

Any Java object can register to listen to any other object’s events, but it is often useful
for awrapper object to listen to its own GUI and notify events. It usually makes most
sense for aclient object to listen to IDL output events.

Note
Registering or unregistering listeners for events should happen in the initListeners
method or AFTER the createObject method.

Nondrawable Java Objects
Nondrawable objects, which inherit from JIDLObject, can be notified of the
following events:
* IDL notify events (by implementing JIDLNotifyListener)
e IDL output events (by implementing JIDL OutputListener)
The default behavior as provided by the JIDL Object superclassis that they are not
wired to listen to any events.

Drawable Java Objects
Drawable objects, which inherit from JIDL Canvas, are wired by default to listen to
the following events:
¢ Mouse events (by implementing JJIDLM ouseL istener)
e Mouse enter canvas
e Mouse exit canvas
e Mouse pressed
* Mousereeased
e Mouse motion events (by implementing J DL MouseM otionL istener)
¢ Mousedragged

* Mouse moved

IDL Connectivity Bridges Event Handling

222 Chapter 9: Using Exported Java Objects

« Key events (by implementing JIDLKeyListener)
e Key pressed
e Key released
e Component events (by implementing JIDL ComponentListener)
e Canvas exposed
» Canvasresized

In addition, drawable objects can aso listen to the following events, but they do not
listen to them by default:

e |IDL notify events (by implementing JIDLNotifyListener)
* IDL output events (by implementing JIDL OutputListener)

IDL Notification

As mentioned above, IDL objects that subclass itComponent can trigger a
notification from the IDL object level by calling IDLitComponent::NotifyBridge.
Both drawable (JIDL Canvas) and nondrawable (JIDL Object) wrapper objects handle
IDL notifications.

To receive anatification, a class must implement the JIDLNotifyListener interface
and register with the wrapper object by calling its addIDLNotifyListener method to
register itself asalistener. The listener class can unregister itself by calling the
removel DL NotifyListener method.

The following is the definition of the JIDLNotifyListener interface:
public interface JI DLNotifyLi stener {

/1 obj: a reference to the wapper object that triggered notify
/1 sl and s2 are strings sent from | DLitConponent:: NotifyBridge
void Onl DLNotify(JIDLCbjectl obj, String sl, String s2);

}

These methods are available to JIDL Canvas and JIDL Object:

public void addl DLNoti fyLi stener(JI DLNoti fyListener |);
public void renovel DLNoti fyLi stener(JI DLNoti fyLi stener 1);

IDL Output

In general, IDL output can be listened to by any class that implements the
JIDLOutputListener interface and registersitself as alistener by calling

Event Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 223

addIDL OutputL istener. The listener class can unregister itself by calling
removel DL OutputL istener. Both drawable (JIDL Canvas) and non-drawable
(JIDLObject) wrapper objects handle IDL output.

The following is the definition of the JIDL OutputListener interface:
public interface JlDLQutputListener {

/1 obj: a reference to the wapper object that triggered notify
/1l s is the IDL output string
voi d | DLout put (JI DLObj ectl obj, String s);

}
These methods are available to J DL Canvas and JIDL Object:

public void addl DLQut put Li st ener (JI DLQut put Li stener [|);
public void renovel DLQut put Li st ener (JI DLQut put Li stener 1);

Handling Specific Events

This section describes how client applications can listen to and handle the following
events. mouse, mouse motion, keyboard, and component.

Mouse Events

Mouse events include a mouse entering the canvas, the mouse exiting the canvas, a
mouse press in the canvas, and a mouse release in the canvas. Drag and move events
are handled as mouse motion events (see “Mouse Mation Events’ on page 224).

In general, mouse events may be listened to by any class that implements the
JDLMouseListener interface and registersitself as alistener by calling the
addIDLMouseListener method. The listener class can unregister itself by calling the
removel DLMouseL istener method. Only drawable (J DL Canvas) wrapper objects
handle this event type.

The following is the definition of the JIDLMousel istener interface:

public interface Jl DLMbuseli stener {

/1 obj is a reference to the w apper object

/1l e is a java.aw .event.MuseEvent

voi d | DLnouseEntered (JI DLObj ectl obj, MuseEvent e);
voi d | DLnouseExited (JIDLObjectl obj, MuseEvent e);
voi d | DLnousePressed (JI DLObj ectl obj, MuseEvent e);
voi d | DLnouseRel eased(JI DLObj ect| obj, MuseEvent e);

}
These methods are available to JIDL Canvas:

IDL Connectivity Bridges Event Handling

224

Chapter 9: Using Exported Java Objects

public void addl DLMbuselLi st ener (JI DLMbuseli st ener |);
public void renovel DLMbuselLi st ener (JI DLMbuseLi stener 1);

The default behavior of drawable wrappersisthat they automatically register to listen
to themselves and provide default event handlers for each of these events. The
following table describes the default behavior for each event type.

Event Action

| DLmousePr essed Triggered when amouse button is pressed inside the
canvas. The default behavior passes the event to the
IDL method OnM ouseDown.

| DLnouseRel eased | Triggered when a mouse button is released inside the
canvas. The default behavior passes the event to the
IDL method OnMouseUp.

| DLnouseEnt er ed Triggered when the mouse enters the canvas. Default
implementation does nothing. The default behavior
callsthe IDL method OnEnter.

| DLmouseExi t ed Triggered when the mouse exits the canvas. Default
implementation does nothing. The default behavior
callsthe IDL method OnExit.

Table 9-1: The Default Behavior of Mouse Event Types

Mouse Motion Events

Mouse motion events include a mouse being moved or dragged inside the canvas. In
general, mouse motion can be listened to by any class that implements the
JDLMouseMotionListener interface and registersitself as alistener by calling the
addIDLMouseMotionListener method. The listener class can unregister itself by
calling the removel DLM ouseMotionListener method. Only drawable (JIDL Canvas)
wrapper objects handle this event type.

The following is the definition of the JIDLMouseM ationListener interface:

public interface Jl DLMbuseMdti onLi stener {

/1 obj is a reference to the wapper object

/l e is a java.aw.event.MuseEvent

voi d | DLnouseDr agged(JI DLCbj ect| obj, MyuseEvent e);
voi d | DLnobuseMoved(JI DLObj ect| obj, MuseEvent e);

Event Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 225

These methods are available to JI DL Canvas:

public void addl DLMouseMoti onLi st ener (JI DLMbuseMbdt i onlLi stener |);
public void renpvel DLMbuseMoti onLi st ener (JI DLMouseMdt i onlLi st ener

)
The default behavior of drawable wrappersisthat they automatically register to listen
to themselves and provide default event handlers for each of these events. The
following table describes the default behavior for each event type.

Event Action

| DLnmouseDr agged Triggered when the mouse is moved while its | eft
button is pressed inside the canvas. The default
behavior passes the event to the IDL method
OnMouseMootion.

| DLmouseMbved Triggered when the mouse is moved (while no button
is pressed) inside the canvas. The default behavior
passes the event to the IDL method OnM ouseM otion.

Table 9-2: The Default Behavior of Mouse Motion Event Types

Keyboard Events

Keyboard events include a key being pressed or released when the Canvas has focus.
In general, keyboard events can be listened to by any class that implements the
JDLKeyListener interface and registersitself as alistener by calling the
addIDLKeyListener method. The listener class can unregister itself by calling the
removel DLKeyListener method. Only drawable (JIDL Canvas) wrapper objects
handle this event type.

The following is the definition of the JIDLKeyL istener interface:
public interface Jl DLKeyLi stener {
/1 obj is a reference to the wapper object
/1l e is a java.aw .event.KeyEvent
/1 (x,y) is the location of the nmouse in the Canvas

voi d | DLkeyPressed (JIDLOojectl obj, KeyEvent e, int x, int y);
voi d | DLkeyRel eased(JI DLCoj ect| obj, KeyEvent e, int x, int y);

}
These methods are available to JI DL Canvas:
public void addl DLKeyLi st ener (JI DLKeyLi stener 1);

IDL Connectivity Bridges Event Handling

226 Chapter 9: Using Exported Java Objects

public void renovel DLKeyLi st ener (JI DLKeyLi stener 1);

The default behavior of drawable wrappersisthat they automatically register to listen
to themselves and provide default event handlers for each of these events. The
following table describes the default behavior for each event type.

Event Action
| DLkeyPressed Triggered when akey is pressed when the canvas has
focus. The default behavior passes the event to the IDL
method OnKeyboard.
| DLkeyRel eased Triggered when akey is released when the canvas has
focus. The default behavior passes the event to the IDL
method OnKeyboard.

Table 9-3: The Default Behavior of Keyboard Event Types
Component Events

Component events include the drawable canvas being resized and being exposed
(uncovered or redrawn). Typically, these events are not handled by the client, but are
handled behind the scenes by the Java Export Bridge, which resizes and repaints the
canvas automatically. However, these events can be of interest to the client.

In general, component events can be listened to by any class that implements the

J DL ComponentListener interface and registersitself as alistener by calling the
addComponentListener method. The listener class can unregister itself by calling the
removeComponentListener method. Only drawable (JIDL Canvas) wrapper objects
handle this event type, and these methods are available only to JIDL Canvas objects.

The following is the definition of the JIDL ComponentListener interface:

public interface Jl DLConponentListener {
voi d | DLconmponent Resi zed(JI DLCbj ectl obj, Conponent Event e);
voi d | DLconmponent Exposed(JI DLObj ect| obj);

}
These methods are available to JIDL Canvas:

public void addl DLConmponent Li st ener (JI DLConponent Li st ener 1)
public void renpvel DLConponent Li st ener (JI DLConponent Li stener |)

Specifically, drawable wrapper objects (those that inherit from J DL Canvas)
automatically register to listen to their own component events and provide default

Event Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 227

handlers for each of these events. The following table describes the methods and
default implementations for the events.

Event Action

I DLconponent Resi zed | Triggered when the canvas is resized. The default
behavior callsthe IDL method OnResize.

I DLconponent Exposed | Triggered when the canvas is exposed. The default
behavior callsthe IDL OnExpose method, which is
expected to call the IDL object’s draw method.

Table 9-4: The Default Behavior of Component Event Types
Subclassing to Change Behavior

There are two ways to change the event-handling behavior of listener objects:
subclassing the wrapper object and handling the eventsin the subclass, or alowing a
client object to handle events. Typically, GUI events and notifications are handled
through subclassing and IDL output through client objects.

When aclient calls the (drawable or nondrawable) wrapper object’s createObject
method, the wrapper object calsitsinitListeners method internally. This method,
automatically generated by the Export Bridge Assistant, determines which eventsthe
wrapper object will listen to. As explained above, the wrapper abject also has a set of
methods generated to provide the default handling of these events.

To change what the abject is listening to, subclass the generated wrapper object and
override the initListeners method. The subclassed initListeners method can now
register for whatever listenersin which it is interested.

For example, automatically generated drawable wrapper objects handle mouse,
mouse mation, keyboard, and component events. Suppose you have awrapper object
called canvasWrapper, generated by the Assistant. You could subclass awrapper
object called myCanvasWrapper that would only handle mouse motion events. (The
mouse motion events would still be handled in the default manner, but mouse,
keyboard, and component listening would not be enabled.) This new wrapper object
would look like this:

cl ass nyCanvasW apper extends canvasW apper {
public void initListeners() {
addl DLMbuseMot i onLi st ener (this);
}
}

IDL Connectivity Bridges Event Handling

228 Chapter 9: Using Exported Java Objects

To change the behavior of thelistener handlers, subclass the generated wrapper object
and override the event handling method whose behavior you want change. To get the
default behavior, ssmply pass the event to the superclass.

Consider the following example. Given the same generated canvasWrapper class, you
could ignore mouse drags and, on a mouse press, print information to a console
object before passing up to the IDL object to handle. This class would look like this:

cl ass nyCanvasW apper 2 ext ends canvasW apper {
public void | DLnousePressed(JI DLObj ectl o, MyuseEvent e) {
consol e. pri nt MouseEvent (e) ;
super . | DLnousePressed(o, €e); // pass to |IDL

}

public void | DLnmouseDr agged(Jl DLObj ect|l o, MyuseEvent e) {
/1 do not hing

}
}

Listening from Other Java Objects

Any Java object that implements the proper listener interface and registersitself with
the wrapper object as alistener can also listen to events of interest. When more than
one object isregistered to listen to agiven event, al listeners receive the event
without a guarantee of order.

The steps are as follows:
1. The classimplements the proper listener interface.
2. Theclassregistersto listen to events.
3. Theclass handlesthe event in the listener interface method (or methods).

As an example, use the same canvasWrapper in aclass called myClient that listensto
IDL output. First, implement the JIDL OutputListener interface. Next, use the
constructor to have the client register itself as alistener of the wrapper’s IDL output.
Finally, implement the IDL output to act on the output. The code is shown below:

i mport comrsi.javaidl.*;

class nydient inplenents JIDLQutputListener {
canvasW apper m wr apper;
public mydient() {
m wr apper = new canvasW apper ();
m wr apper . createQbj ect();
m wr apper . addl DLQut put Li st ener (t hi s);

}
public void | DLoutput(JIDLOojectl obj, String s) {

Event Handling IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects 229

/! do something with the I DL out put

IDL Connectivity Bridges Event Handling

230

Chapter 9: Using Exported Java Objects

Error Handling

When an error occurs in a Java wrapper object, it throws an unchecked exception of
type J DL Exception (or a subclass of JDLException), which means that callsinto a

wrapper object should be wrapped in try-catch blocks, asis standard in Java.
JIDLException provides the following method for getting the IDL error code:

public | ong get Error Code();

In addition, because JIDL Exception inherits from java.lang.Error, other Java
exception methods such as getM essage and printStack Trace are avail able.

The table below describes the error return values and their meaning when they are
returned within the context of the wrapper method calls. The Java errors are
encapsulated in a JIDLException object or a subclass of JIDLEXxception, as noted in

thetable.

Error Exception/Code

Meaning

JIDLBusyException (asubclass of JIDLException)
with JDLConst.IDL_BUSY error code

IDL isbusy. The client made a method
call on awrapper object, but the
underlying IDL processis still busy
with a previous request (method call)
and has not finished yet. For more
information, see “IDL Ownership and
Blocking” on page 128.

JDLEXxception with
JDLConst.IDL_ABORT_NOT_OWNER error
code

Theclient called the abort method ona
wrapper object, but that wrapper
object is not the current owner of the
underlying IDL process. Therefore, it
isnot alowed to abort IDL.

JDLEXxception with
JDLConst_IDL_NOTHING_TO_ABORT error
code

Theclient called the abort method on a
wrapper object, but the underlying
IDL processis not currently busy, so
thereis nothing to abort.

JDLADbortedException (a subclass of
JIDLException) with JIDLConst.IDL_ABORTED
error code

Thiserror isreturned from the original
wrapper method call whose operation
was aborted by a successful cal to the
abort method.

Table 9-5: JIDLException Error Codes

Error Handling

IDL Connectivity Bridges

Chapter 9: Using Exported Java Objects

231

Error Exception/Code

Meaning

JIDLException with
JDLConst.OPS NOTICE_PROCESS ABORTED
error code

This error occurs when the client has
created several wrapper instances
whose underlying IDL objects al live
in the same IDL process. During a
method call on one of those wrapper
instances, the IDL pro code issues the
IDL exit command. When this occurs,
the process is destroyed, which also
destroys all the underlying IDL
objects. However, the client needs to
be notified of this event so that it can
consider all those wrapper instances as
invalid and not use them again.

First, each listener (event subscriber)
for each wrapper instance receives an
OnIDLNotify callback with the first
string set to “OPS_NOTIFY_EXIT".
Then, the method call (if any) that isin
progress at the time of the EXI T
command will return with the
specified error code.

Upon receiving the notification and
after receiving this error code, the user
must not make any other method calls
on the wrapper instance, as the
underlying IDL object no longer exits.

JIDLException with IDL error code

A specific IDL error occurred. The
error codeisthe ssmeasthe IDL error
code.

Table 9-5: JIDLException Error Codes (Continued)

IDL Connectivity Bridges

Error Handling

232 Chapter 9: Using Exported Java Objects
Debugging

When running an application that relies on a Java wrapper object, it is often difficult
to determine when errors occur in the associated IDL object. Since the instance of the
wrapper object isinvoked outside of IDL, the normal debugging capabilities of the
IDL Development Environment are not available.

However, it is possible to obtain this output by setting the IDL_BRIDGE_DEBUG
environment variable as described in “IDL_BRIDGE_DEBUG” in Chapter 1 of the
Using IDL manual. For example, if you set this environment variable to 1, you can
seelibrary load errors (on Windows), IDL execution errors, and output from IDL
print commands. The appearance of debug information printed to st dout on
Windows or UNIX depends upon the value set for the IDL_BRIDGE_DEBUG
environment variable:

Value Behavior
0 Turn off debug output
1 Turn on debug output, which includes output from library load
errors, IDL execution errors, and PRINT statement output

To get additional Java-side diagnostics related to finding and loading the native
libraries, definethe IDL_LOAD_DEBUG parameter on the command line when
starting a Java application, as follows:

java -DI DL_LOAD DEBUG <cl ass-to-run>

Debugging IDL Connectivity Bridges

Chapter 10
Using the
Connector Object

This chapter discusses how to use the prebuilt connector object that isincluded in the IDL
distribution in COM and Java applications.

About the IDL Connector Object 234 Connector Object COM Examples. 237
Preparing to Use the IDL Connector Object .. Connector Object JavaExamples 241
235

IDL Connectivity Bridges 233

234 Chapter 10: Using the Connector Object

About the IDL Connector Object

The prebuilt IDL connector export object that is shipped with the IDL distribution
lets you quickly incorporate the processing power of IDL into an application
developed in an external, object-oriented environment such as COM or Java. The
connector object definition provides the basis for a nondrawable COM or Java
connector wrapper object that includes the ability to get and set IDL variables and
execute command statements in the associated IDL process. These connector
wrapper objects exposes al of the standard wrapper object methods. See “ Stock
Wrapper Methods” on page 184 (COM) and “ Stock Wrapper Methods” on page 208
(Java) for details.

Use a connector wrapper object if you need basic IDL processing capabilities. If you
need the flexibility of custom object methods, an interactive IDL drawing interface,
and/or associated mouse events, you should create an IDL object with the needed
functionality and export it using the Export Bridge Assistant as described in Chapter
7, “Using the Export Bridge Assistant”.

Note
Using the connector object provides exactly the same functionality as creating and
exporting the simplest IDL object, which could consist of code similar to the

following:
FUNCTI ON sinpl eobj::INIT
RETURN, 1
END

PRO si npl eobj __define
struct = {sinpleobj, $
dummy: 0Ob $; dunmy structure field, not a property

}
END

About the IDL Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 235

Preparing to Use the IDL Connector Object

All of the files needed to use a connector object are provided in the IDL distribution.
You can locate the filesin the following directory locations where RSI _DI Riswhere
you have installed IDL:

Files

File Descriptions

COM

Resourcefiles:
e COM.idl _connect.dll
e COM.idl _connect.tlb
arelocated in <RSI _DI R>/ r esour ce/ bri dges/ export/ COM

Java

Thej ava_| DL_connect classisincluded inthe
javaidl b. j ar file, which islocated in the

<RSI DI R>/resource/ bri dges/ export/java

directory.

Thej avai dl b. j ar filemust be included in the Java classpath
in order to use the Java connector wrapper object. Thisfile

containsthecom i dl . j avai dl package, which defines the
Java class files needed by the Java export bridge.

IDL Object

The connector abject definition is stored in a SAVE file named
i dl _connect define. sav
located inthe <RSI _DI R>/1i b/ bri dges directory.

Thisthe only object definition file, and since it is contained
within a SAVE file, it can be used with runtime IDL. Unlike
custom IDL object definition files, there is no need to distribute
this definition file with your application; it is aready included in
the IDL distribution.

Table 10-1: Connector Object Files

To use the connector object with a COM application, you must reference the

COM.i dl _connectLib 1.0 Type Library library inyour application. Thereis
no need to register the COM i dl _connect . dI | asdescribed in “COM Registration
Requirements’ on page 136 since this is automatically registered upon IDL

installation.

IDL Connectivity Bridges

Preparing to Use the IDL Connector Object

236 Chapter 10: Using the Connector Object

To use the connector object within a Java application, you must include the correct
i nport statement in your Java application and set the classpath and as described in
“Java Requirements’ on page 136.

Preparing to Use the IDL Connector Object IDL Connectivity Bridges

Chapter 10: Using the Connector Object 237

Connector Object COM Examples

The following examples show how to use the connector object in Visual Basic .NET
Console and Windows applications. These examples contain important information
about how to access messages sent from IDL in a COM application and how to
communicate with the IDL process. In COM clients, the IDL output and notification
methods are part of the default outgoing event interface.

« “Hello World Example with a COM Connector Object” on page 238 — shows
how to use the ExecuteString method of the wrapper object to print a statement
such as “Hello World” in a console application.

e “DataManipulation witha COM Connector Object” on page 239 — uses
SetIDLVariable, Getl DLVariable and ExecuteString methods during array
manipulation within a Consol e application.

e “IDL Command Linewitha COM Connector Object” on page 240 — provides
an interactive “IDL command line” in a Windows application.

IDL Connectivity Bridges Connector Object COM Examples

238 Chapter 10: Using the Connector Object

Hello World Example with a COM Connector Object

To create aVisual Basic .NET console application using the connector object
wrapper methods to print “Hello World” in a console application window, complete
the following steps.

1. Createanew Visual Basic .NET console application and add areference to the
COM_idl _connectLib 1.0 Type Library.

2. Replace the default module definition with the code referenced below. See
code comments for details.

Example Code
The text file for this example, com export _hel | o_doc. t xt , islocated in the
exanpl es/ doc/ bri dges/ COM subdirectory of the IDL distribution. This Visual
Basic .NET code can be copied from the text file and adopted for use in your COM
environment.

After building and running the project, a simple console window will appear and
“Hello World” will be output to this location.

Note
An expanded “Hello World” example that alows you to optionally say hello from
someone can be found in “Hello World COM Example with Custom Method” in
Chapter 12. This example uses a custom IDL object with a method and the Export
Bridge Assistant to create the necessary wrapper object files.

Hello World Example with a COM Connector Object IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/COM/com_export_hello_doc.txt

Chapter 10: Using the Connector Object 239

Data Manipulation with a COM Connector Object

Thefollowing Visua Basic .NET example creates two arrays and passes them to IDL
using the Setl DLVariable method. An ExecuteString command then multiplies the
two arrays and Getl DLVariable returns the result to the COM application. The
product of the array multiplication is printed to the console window.

1. Createanew Visual Basic .NET console application and add areference to the
COM.i dl _connectLib 1.0 Type Library.

2. Replace the default module definition with the following code. See code
comments for useful information.

Example Code
Thetext file for this example, com export _arrays_doc. t xt , islocated in the
exanpl es/ doc/ bri dges/ COM subdirectory of the IDL distribution. This Visual
Basic .NET code can be copied from the text file and adopted for use in your COM
environment.

Building and running this program outputs the following to the console window.

HELF. ¢ ~FULL eguals:
G LONG = Arrayl6,. 61

Mumber of elementsz in 1st dimension:
The results of multiplying afArray
a i 2 E]
times bArray
5

4 3

equals the following:
a 5 a

1
8
6
4
2
a
e

Press any key to continu

Figure 10-1: Console Output of Array Multiplication

IDL Connectivity Bridges Data Manipulation with a COM Connector Object

RSI_PROCODE/examples/doc/bridges/COM/com_export_arrays_doc.txt

240 Chapter 10: Using the Connector Object

IDL Command Line with a COM Connector Object

The following example creates a simple Windows application in Visual Basic .NET

that includes two text boxes. An IDL command typed in the top textbox is passed to
the IDL process through the use of the ExecuteString method. Command output and
any error messages are printed in the bottom textbox.

=lol x|

Figure 10-2: Design-time View of Simple Command Line Example

To replicate this example, complete the following steps:

1. Create anew Visual Basic .NET Windows application and add areferenceto
theCOM i dl _connectLib 1.0 Type Library.

2. Replace the default form definition with the code referenced below. See code
comments for details.

Example Code
Thetext file for thisexample, com export _conmandl i ne_doc. t xt , islocated
inthe exanpl es/ doc/ bri dges/ COM subdirectory of the IDL distribution. This
Visual Basic .NET code can be copied from the text file and adopted for usein your
COM environment.

After building and running the project, enter IDL commands in the top textbox.
Pressing the Enter key sends the command to the IDL process.

IDL Command Line with a COM Connector Object IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/COM/com_export_commandline_doc.txt

Chapter 10: Using the Connector Object 241

Connector Object Java Examples

The following examples introduce the capabilities of the Java connector object:
e “Hello World Example with a Java Connector Object” on page 242
e “Data Manipulation with a Java Connector Object” on page 244
e “IDL Command Line with Java Connector Object” on page 246

Note
The Java class files needed for the Export Bridge are found in the
comidl.javaidl package whichisstoredinthej avai dl b. j ar file. See
“Preparing to Use the IDL Connector Object” on page 235 for more information.

Note on Running the Java Examples

Examplesin this chapter provide Windows-style compilej avac (compile) and
java (run) commands. If you are running on a platform other than Windows, use
your platform’s path and directory separators and see “ Java Requirements’ on
page 136 for information about the br i dge_set up file, which sets additional
information.

IDL Connectivity Bridges Connector Object Java Examples

242 Chapter 10: Using the Connector Object

Hello World Example with a Java Connector Object

To create a Java application that uses the connector object’s executeString method to
print “Hello World” in the command window, compl ete the following steps.

Example Code
Thefilefor thisexample, hel | o_exanpl e. j ava, islocated in the
exanpl es/ doc/ bri dges/j ava subdirectory of the IDL distribution.

1. Openthefilenamed hel | o_exanpl e. j ava in thelocation referenced above.

2. Open the Windows Command window by selecting Start — Run and enter
cmd in the textbox.

3. Usethe cd command to change to the directory containing the
hel | o_exanpl e. j ava file. For adefault Windowsinstallation, the command
would be:

cd RSI _DI R exanpl es\ doc\ bri dges\j ava
where RSI _DI Risthe directory where you have installed IDL.

4. Referencethe classpath of j avai dl b. j ar inthe compile statement. This
automatically accesses the connector object, j ava_| DL_connect , whichis
contained within the file. Enter the following two commands (as single lines)
to compile and execute the program, replacing <RSI _DI R> with the IDL
installation directory:

javac -classpath
".;RSI _DI R resource\bridges\export\java\javaidlb.jar"
hel | o_exanpl e. j ava

java -cl asspath
".;RSI _DI Riresource\bridges\export\java\javaidlb.jar"
hel | o_exanpl e

Tip
See “Note on Running the Java Examples’ on page 241 for information on
executing Java commands on a non-Windows platform.

After compiling and running the project, “Hello World!” will appear in the command
window.

Note
An expanded “Hello World” example that allows you to optionally say hello from
someone can be found in “Hello World Java Example with Additional Method” on

Hello World Example with a Java Connector Object IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/java/hello_example.java

Chapter 10: Using the Connector Object 243

page 282. This example uses a custom IDL object with a method and the Export
Bridge Assistant to create the necessary wrapper object files.

IDL Connectivity Bridges Hello World Example with a Java Connector Object

244 Chapter 10: Using the Connector Object

Data Manipulation with a Java Connector Object

The following Java example creates two arrays and passes them to IDL using the
setlDLVariable method. An executeString command then multiplies the two arrays
and getl DLVariable returns the result to the java application. The product of the array
multiplication is printed to the command window.

Example Code
Thefilefor thisexample, arr ays_exanpl e. j ava, islocated in the
exanpl es/ doc/ bri dges/j ava subdirectory of the IDL distribution.

Complete the following steps:

1. Openthefilenamed ar r ays_exanpl e. j ava in the location referenced
above.

2. Open the Windows Command window by selecting Start — Run and enter
cnd in the textbox.

3. Usethe cd command to change to the directory containing the
arrays_exanpl e. j ava file. For adefault Windows installation, the
command would be:

cd RSI _DI R exanpl es\ doc\ bri dges\j ava
where RSI _DI Risthe directory where you have installed IDL.

4. Referencethe classpath of j avai dl b. j ar inthe compile statement. This
automatically accesses the connector object, j ava_| DL_connect, whichis
contained within the file. Enter the following two commands (as single lines)
to compile and execute the program, replacing <RSI _DI R> with the IDL
installation directory:

javac -classpath
".;RSI _DI Riresource\bridges\export\java\javaidlb.jar"
arrays_exanpl e.j ava

java -cl asspath
".;RSI _DI R resource\bridges\export\java\javaidlb.jar"
arrays_exanpl e

Tip
See “Note on Running the Java Examples’ on page 241 for information on
executing Java commands on a non-Windows platform.

Data Manipulation with a Java Connector Object IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/java/arrays_example.java

Chapter 10: Using the Connector Object 245

After compiling and running the project, the result of the array manipulationis
printed to the command window, a subset of which appearsin the following figure.

GC:“REI~IDL63“examplessdocsbridgessjavarjava —classpath . ;C:AREIXIDL63I“resource™
hridge~exportsjavasjavaidlb. jar" arrays_exanple
LONHG = Arravl6. 61

Results of multiplying afrray
B 123465
times bArray

543218

equals:
¢ B85 18 15 28 25 >

Figure 10-3: Java Array Manipulation Result

IDL Connectivity Bridges Data Manipulation with a Java Connector Object

246 Chapter 10: Using the Connector Object

IDL Command Line with Java Connector Object

Thefollowing example creates asimple Java application that includes two text boxes.
An DL command typed in the top textbox is passed to the IDL process through the
use of the executeString method. Command output and any error messages are
printed in the bottom textbox.

Example Code
Thefilefor thisexample, J| DLConmandLi ne. j ava, islocated in the
exanpl es/ doc/ bri dges/j ava subdirectory of the IDL distribution.

1. Openthefilenamed JI DLCommandLi ne. j ava in the location referenced
above:

2. Open the Windows Command window by selecting Start — Run and enter
cnd in the textbox.

3. Usethe cd command to change to the directory containing the
JI DLConmmandLi ne. j ava file. For a default Windows installation, the
command would be:

cd RSI _DI R exanpl es\ doc\ bri dges\j ava
where RSI _DI Risthe directory where you have installed IDL.

4. Referencethe classpath of j avai dl b. j ar inthe compile statement. This
automatically accesses the connector object, j ava_I DL_connect , whichis
contained within the file. Enter the following two commands (as single lines)
to compile and execute the program, replacing <RSI _DI R> with the IDL
installation directory:

javac -classpath
".;RSI _DI R resource\bridges\export\java\javaidlb.jar"
JI DLComrandLi ne. j ava

java -cl asspath
".;RSI _DI Riresource\bridges\export\java\javaidlb.jar"
JI DLComrandLi ne

Tip
See “Note on Running the Java Examples’ on page 241 for information on
executing Java commands on a non-Windows platform.

IDL Command Line with Java Connector Object IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/java/JIDLCommandLine.java

Chapter 10: Using the Connector Object 247

After compiling and running the project, a ssmple command line interface appears as
shown in the following figure.

4. JIDLCommand o im] 5

IDL>

Output:

Festored file: IDL_COMNMECT__DEFIME.

Figure 10-4: Java “IDL” Command Line Interface

Send commands to the IDL process by entering them in the top text box and pressing
the Enter key. Any output or errors will appear in the lower text field.

IDL Connectivity Bridges

IDL Command Line with Java Connector Object

248 Chapter 10: Using the Connector Object

IDL Command Line with Java Connector Object IDL Connectivity Bridges

Chapter 11

Writing IDL Objects for
Exporting

This chapter discusses the following topics.

OVErVIeWoiiiiii i 250 Exporting Drawable Objects 252
Programming Limitations 251 Drawable Object Canvas Examples 254

IDL Connectivity Bridges 249

250

Chapter 11: Writing IDL Objects for Exporting

Overview

Overview

The abjects you writein IDL can, in the vast number of cases, take full advantage of
the Export Bridge technology, with only afew of IDL’s capabilities not available. In
addition, due to limitations imposed by external environments (COM and Java),
certain restrictions exist for the method signatures that are exposed through the
Export Bridge. This chapter outlines these functional limitations.

The chapter also provides a concise introduction to the object classes available to
make drawable wrapper objects (objects that subclass from IDLitWindow,
IDLgrWindow, and IDLitDirectWindow) and which to use when, with examples.

IDL Connectivity Bridges

Chapter 11: Writing IDL Objects for Exporting 251

Programming Limitations

This section discusses the programming limitations required by the Export Bridge
technology for successfully generating wrapper objects.

Keyword Parameters

Because COM and Java don’t support the concept of keyword parameters, the Export
Bridge does not support IDL keyword parameters in method signatures. If you want

to export an IDL method that uses keyword parameters, you must wrap the method in
another method that only implements positional parameters. The keyword parameters
to IDL source object methods are ignored except for the SetProperty and GetProperty
methods, in which keyword parameters are extracted to obtain the object’s properties.

Unsupported Data Types

Properties and method parameters exported to a wrapper object class cannot include
data of any of the following types:

e IDL Pointer
e Single- or double-precision complex data
* |DL Structure

« |DL objects, unlessthe object is an exported IDL object that existsin the same
process space or pool as the object upon which the method is being called (as
described in “ Object Reference Use” on page 129)

Array Majority and Shape

The mgjority and shape of how data arrays are structured differs between the external
environments supported by the Export Bridge (COM and Java) and IDL. Note that
the Export Bridge technology might create a copy of array data when converting
between external environmentsand IDL.

For further information on array majority, see“Multidimensional Array Storage and
Access’ on page 521. In addition, see “Array Order Conversion” on page 130 and
“Converting Array Majority” on page 157 for details on how array mgjority is
handled in the Assistant.

IDL Connectivity Bridges Programming Limitations

252 Chapter 11: Writing IDL Objects for Exporting

Exporting Drawable Objects

If you want to create a COM or Java application that uses a drawable wrapper object,
you must subclass your IDL object from one of the following object classes before
generating the wrapper:

e IDLgrWindow — provides a canvas for graphic objects
» IDLitWindow — provides a canvas for iTool visualizations
« |IDLitDirectWindow — provides a canvas for Direct Graphic routine output

Note
Java drawabl e objects are not supported on the Macintosh OS X platform.

Requirements for Drawable Objects

Objects that inherit from IDLgrWindow must set the GRAPHICS _TREE property
following creation of the objects hierarchy. This supports the automatic redraw
capabilities of the OnExpose method.

Note
Common drawable object methods (such as OnKeyboard or OnMouseMotion) are
typically not displayed in the Export Bridge Assistant when exporting a drawable
object. See “Drawable Object Event Handlers” on page 170 for details.

In addition, IDL objects derived from IDLitDirectWindow must first provide a call of
sel f - >makeCur r ent at the beginning of each method to ensure that the graphics
rendering occurs in the wrapper’s drawable window, as described below.

Direct Graphics Support

To provide IDL Direct Graphics support, the export bridge uses an object to create an
IDL Direct Graphics drawing surface. The Direct Graphics object,
IDLitDirectWindow, differs from standard IDL Direct Graphicsin the following
manner:

* The object implements the Active Window event handler callback methods to
manage events. As such, to perform any event processing in IDL the user must
sub-class this object and override the desired event callback methods.

Exporting Drawable Objects IDL Connectivity Bridges

Chapter 11: Writing IDL Objects for Exporting 253

» To make the window object current in the underlying direct graphics driver the
user callsthe IDLitDirectWindow::MakeCurrent method on the object. Thisis
similar to aWSET operation in IDL, but no window index is required.

e Onceawindow iscurrent, any IDL direct graphics routine can be called to
draw graphics on the provided drawing surface. The user can add a method on
the object they implement to render graphics or use the execute string
functionality of the bridge to issue IDL commands.

While the Export Bridge implementation provides a different method to create and
interact with a Direct Graphics Window, the differences are minor and let users
rapidly port their IDL Direct Graphics implementation for use with this technology.

IDL Connectivity Bridges Exporting Drawable Objects

254 Chapter 11: Writing IDL Objects for Exporting

Drawable Object Canvas Examples

The following examples use the three object classes as canvases for drawable objects.
You can use them with the Export Bridge by following “ Java Wrapper Example” on
page 255 or use them with the Export Bridge Assistant (for more information, see
“Using the Export Bridge Assistant” on page 139). For information about a COM
example, see “COM Wrapper Example” on page 256.

IDLgrwWindow Example

The IDLgrWindow example uses object graphics to create a map that lets you click
on and transform it with a trackball.

Example Code
The procedurefilei dl gr wi ndowexanpl e__def i ne. pr o, located in the
exanpl es/ doc/ bri dges/ subdirectory of the IDL distribution, contains the
example code. You can view thefilein an IDL Editor window by entering
. COWPI LEi dI gr wi ndowexanpl e__defi ne. pro.

IDLitDirectWindow Example

The IDLitDirectWindow example uses direct graphics to create a palette on which
you can draw and erase lines.

Example Code
The procedurefilei dl i ddi r ect wi ndowexanpl e__defi ne. pr o, located in the
exanpl es/ doc/ bri dges/ subdirectory of the IDL distribution, contains the
example code. You can view thefilein an IDL Editor window by entering
. COWPI LEi dlitdirectw ndowexanpl e__define. pro.

IDLitWindow Example

The IDLitWindow example uses the i Surface tool to plot a Hanning transform on a
surface.

Example Code
The procedurefilei dl i t wi ndowexanpl e__defi ne. pro, located in the
exanpl es/ doc/ bri dges/ subdirectory of the IDL distribution, contains the
example code. You can view the filein an IDL Editor window by entering
. COWPI LEi dl i t wi ndowexanpl e__defi ne. pro.

Drawable Object Canvas Examples IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/idlgrwindowexample__define.pro
RSI_PROCODE/examples/doc/bridges/idlitdirectwindowexample__define.pro
RSI_PROCODE/examples/doc/bridges/idlitwindowexample__define.pro

Chapter 11: Writing IDL Objects for Exporting 255

Java Wrapper Example

An example Javawrapper that works with all three of the canvas types described
aboveisincluded in the IDL distribution. The application accepts a parameter that
specifies the name of the IDL classto use.

Note
Drawable Java objects are not supported on Macintosh OS X.

Note
The Export Bridge Assistant creates wrapper objects comparable to the code in this
example. Your applications should not need to include such code if they are using
Assistant-generated wrappers.

Note
The following steps assume you are working on a UNIX platform. If you are
working on a Windows platform, substitute the appropriate paths and path-
separator characters.

1. Copy thefilel DLW ndowExanpl e. j ava from the
RSI _DI R/ exanpl es/ doc/ bri dges/j ava

directory to anew directory where you will compile the Java code. In this
example, we assume you will build the Java example in the
/tnp/idljavatest directory.

Change directoriestothe/ t np/ i dl j avat est directory.

3. Sourcethebri dge_set up file from the bi n subdirectory of the IDL
installation. If you use a C shell:

source | DL_DI R/ bin/bridge_setup

where IDL_DIRisthe path to your IDL instalation. (There are
bri dge_set up filesfor the C shell, korn shell, and bash shell. Use the proper
source command and br i dge_set up file for your installation.)

4. Compilethe | DLW ndowExanpl e. j ava file with the following command:
j avac | DLW ndowExanpl e. j ava
where RSI _DI Risthe path to your IDL installation.

This command creates two classfiles: | DLW ndow. cl ass and
| DLW ndowExanpl e. cl ass.

IDL Connectivity Bridges Drawable Object Canvas Examples

256 Chapter 11: Writing IDL Objects for Exporting

5. Execute the example code with the following command:
java | DLW ndowkxanpl e <l DL_cl assnamnme>

whereRSI _DI Risthepathtoyour IDL installationand <I DL_cl assnanme> is
the name of one of the example classes described above.

Note
Thebri dge_set up file setsyour CLASSPATH environment variable to
include both the current directory (. ") and the
I DL_DI R'resource/ bri dges/ export/javal/javaidlb.jar file. See
“Java Reguirements’ on page 136 for additional information about the class
path

For example, if you sourced the bri dge_set up file and compiled the
| DLW ndowExanpl e. j ava fileinthe/t np/i dl j avat est directory, the
following commands would execute the three exampl es described above:

java | DLW ndowkxanpl e | DLgr W ndowExanpl e
java | DLW ndowkxanpl e | DLit Di r ect W ndowExanpl e
java | DLW ndowkxanpl e | DLi t W ndowExanpl e

COM Wrapper Example
See“ Tri-Window COM Export Example” on page 272 for the steps needed to include

controls based on the three drawable objectsin aVisual Basic .NET Windows
application.

Drawable Object Canvas Examples IDL Connectivity Bridges

Chapter 12

Creating Custom
COM Export Objects

This chapter discusses the following topics.

About COM Export Object Examples. ... 258 Drawable COM Export Examples
Nondrawable COM Export Example 260

IDL Connectivity Bridges

257

258 Chapter 12: Creating Custom COM Export Objects

About COM Export Object Examples

An DL object can be wrapped for use in aCOM application using the Export Bridge
Assistant as described in Chapter 7, “Using the Export Bridge Assistant”. This
chapter provides several Visua Basic .NET examples that use custom COM export
objects. Theseinclude:

* Nondrawable examples — show how to access the processing power of IDL in
a COM application by exchanging data with the IDL process, issuing IDL
commands, and accessing | DL output

« Drawable examples — contain the elements needed to create interactive IDL
drawing windows and to access keyboard and mouse events

Note
You can quickly incorporate the processing power of IDL in a COM application by
including the pre-built COM connector wrapper object in your external application.
Use this option if you do not need custom methods or an interactive drawing
surface. See Chapter 10, “Using the Connector Object” for examples.

The general process for each of these examples involves the following:
1. CreatetheobjectinIDL.

2. Export the object using the Export Bridge Assistant, which createsthe .dl |,
t1b or.ocx files associated with the IDL object that is now wrapped in a
COM export object wrapper.

Register the .dl | or .ocx file.

Reference the appropriate library in your COM application before attempting
to access the object functionality. This functionality automatically includes
stock methods and events (described in Chapter 8, “Using Exported COM
Objects’) in addition to custom methods you have chosen to export.

Note
See " Writing IDL Objects for Exporting” on page 249 for information on how to
create custom IDL objects that can be successfully exported using the Export
Bridge Assistant. There are important object method and data type requirements
that must be met.

About COM Export Object Examples IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 259

Note
When you distribute an application, you will also need to share:
—any application-specific .dl | files generated during the build process
—the executable file (.exe)
—the.dl' I or.ocx files(generated by the Export Bridge Assistant)
—the .pr o or .sav file that contains the custom object definition
Any .pr o or .sav filesincluded with your application must be located in the IDL

path.

Debugging Applications Using Export Objects

It can be challenging to determine what is happening in the IDL process associated
with awrapper object without the debugging features of the IDL development
environment. For access to valuable debug information, consider using the
IDL_BRIDGE_DEBUG environment variable, described in “ Debugging” on

page 202.

IDL Connectivity Bridges About COM Export Object Examples

260 Chapter 12: Creating Custom COM Export Objects

Nondrawable COM Export Example

Nondrawable objects provide access to the enormous processing power of 1DL, but
do not provide IDL drawing capabilities. Thisis useful for applications that need the
data manipulation capabilities of IDL, but have no need for, or have independent
drawing capabilities.

Hello World COM Example with Custom Method

The following simple example creates an IDL object with a single function method
that accepts one argument, and walks through the process of exporting the object
using the Export Bridge Assistant. Once the export files are created, a simple Visual
Basic .NET console application shows how to access the object method and capture
its output.

Complete the following steps to duplicate this example.

1. InanIDL Editor window, copy in the following code and save the file as
hel | owor | dex__defi ne. pro inadirectory in your IDL path:

Met hod returns nessage based on presence or
absence of argument.
FUNCTI ON hel | owor | dex: : Hel | oFrom who
I F (N_ELEMENTS(who) NE 0) THEN BEG N
message = "Hello Wrld from" + who
RETURN, nessage
ENDI F ELSE BEG N
nmessage = 'Hello World'
RETURN, nessage
ENDEL SE
END

Init returns object reference on successful
initialization.

FUNCTI ON hel l oworl dex: : INI'T
RETURN, 1

END

oj ect definition.
PRO hel | owor | dex__defi ne
struct = {helloworldex, $
who: ‘', $
nmessage: ' ' $

END

Nondrawable COM Export Example IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 261

Note
Itisagood ideato test the functionality of an object before exporting it. After
compiling thefile, enter the following lines at the command line and make
sure the output is what is expected for this object.

ohel l 0 = OBJ_NEW " HELLOWORLDEX")
PRI NT, ohel | o->Hel | oFrom()
PRI NT, ohello->HelloFronm("M. Bill")

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a COM export object by selecting File — New Project —
COM and browse to select the hel | owor | dex__def i ne. pr o file. Click
Open to load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in “ Specifying Information for
Exporting” on page 156. Refer to that section if you need more information
about the following steps.

4. Thetop-level project entry in the left-hand tree panel is selected by default.
There is no need to modify the default properties shown in the right-hand
property panel, but you can enter different values if desired. Set other export
object characteristics as described in the following table. Select the tree view
item listed in the left column to configure the related propertiesin the right
column.

Tree View Item Parameter Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

» Output classname
* Processname
» Output directory

helloworldex Drawable object equals False

Table 12-1: Example Export Object Parameters

IDL Connectivity Bridges Nondrawable COM Export Example

262 Chapter 12: Creating Custom COM Export Objects

Tree View Item Parameter Configuration

HELLOFROM method Output method hame — accept the
default value, HELLOFROM

Return Type— BSTR since this
function method returns a string
message (as defined in the IDL object
definition structure)

Array — False since this method
returns a single string, not an array

Export — True

WHO argument M utability — In since the argument is
not passed back to the caller

Type — BSTR since thisargument is
defined asastring in the IDL object
definition

Array — False

Export — True

Table 12-1: Example Export Object Parameters

5. Savethe project by selecting File —» Save project. Accept the default name
and location or make changes as desired.

6. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. For a nondrawable object, .t | b
and .dl | files (named based on the object name) are created in the Output
directory.

8. Registerthe.dl | usingregsvr32 hel | owor| dex. dl | . See“COM
Registration Requirements’ on page 136 for detailsif needed.

9. Create anew Visual Basic .NET console application and import a reference to
the COM library named hel | owor | dexLib 1.0 Type Library.

10. Replace the default module code with the text in the file referenced below. See
code comments for details.

Nondrawable COM Export Example IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 263

Example Code
Thetext file for thisexample, com export _hel | oex_doc. t xt , islocated in the
exanpl es/ doc/ bri dges/ COM subdirectory of the IDL distribution. This Visual
Basic .NET code can be copied from the text file and adopted for use in your COM
environment.

After building the solution and starting without debugging, the console window
appears with the output messages.

IDL Connectivity Bridges Nondrawable COM Export Example

RSI_PROCODE/examples/doc/bridges/COM/com_export_helloex_doc.txt

264

Chapter 12: Creating Custom COM Export Objects

Drawable COM Export Examples

A COM export object that supports graphics must be based on a custom IDL object
that inherits from IDLgrWindow, IDLitWindow or IDLitDirectWindow (as described
in “Exporting Drawable Objects’ on page 252). Additionally, your IDL object must
also implement a set of callback methodsif you want to be able to respond to mouse
or keyboard events in the graphics window. These are described in “ Event Handling”
on page 197. Examplesin this section include:

“COM |DLgrWindow Based Histogram Plot Generator” on page 265 —
provides an object based on IDLgrWindow that creates a histogram plot for a
selected image file and lets you change the plot linestyle property.

“COM IDLitWindow Surface Manipulation” on page 269 — includes a
drawable IDLitWindow example with ISURFACE functionality and a custom
method |ets you change the active manipulator. Delete key events are captured
and passed to a custom OnKeyboard method that del etes selected
visualizations.

“Tri-Window COM Export Example” on page 272 — includes controls based
on the three types of drawable objects (IDLgrwindow, IDLitWindow, and
IDLitDirectWindow) in asingle Visual Basic .NET Windows application. A
subprocedure captures | DLitComponent::NotifyBridge output and printsit to a
label on the form.

Drawable COM Export Examples IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 265

COM IDLgrWindow Based Histogram Plot Generator

This drawable object example inherits from IDLgrWindow and creates a histogram
plot for a selected monochrome or RGB image file. While this example does contain
several custom methods including those for opening afile, creating the plots, and
changing plot characteristics, it does not use keyboard or mouse events. See “COM
IDLitWindow Surface Manipulation” on page 269 for such an example.

Example Code
The abject definition file, export_grwi ndow _doc__defi ne. proislocatedin
the exanpl es/ doc/ bri dges subdirectory of the IDL distribution.

Complete the following steps to duplicate this example.

1. InanIDL Editor window, open the object definition file by entering. COMPI LE
export_grwi ndow doc__defi ne. pr o at the command prompt.

Note
Itisagood ideato test the functionality of an object before exporting it. After
compiling the file, enter the following lines at the command line and make
sure the output iswhat is expected for this object.

oPl ot Wndow = OBJ_NEW "export _grw ndow _doc")

oPl ot W ndow >CHANGELI NE, 2
Thiswill display athree channel histogram plot and change the plot linestyle
to dashed.

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a COM export object by selecting File — New Project —
COM and browse to select export _grwi ndow _doc__defi ne. pro. Click
Open to load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in * Specifying Information for
Exporting” on page 156. Refer to that section if you need more information
about the following items.

4. Set export object characteristics as described in the following table. When you
select the tree view item listed in the left column, configure the related
properties as noted in the right column.

IDL Connectivity Bridges COM IDLgrWindow Based Histogram Plot Generator

RSI_PROCODE/examples/doc/bridges/export_grwindow_doc__define.pro

266 Chapter 12: Creating Custom COM Export Objects

Note
Set the Export parameter to True for all itemsin thislist unless otherwise
noted.
Tip
You can select multiple itemsin the tree view and set properties for the
group.
Tree View Item Property Configuration

IDL Export Bridge Project | Accept the default value or make changes
asdesired:

» Output classname
* Processname
» Output directory

export_grwindow_doc Drawable object equals True

OMODEL property Type — IUnknown*
OVIEW property Array — False
OXAXIS property
OXTEXT property
OYAXIS property
OYTEXT property

OPLOTCOLL property Type — IUnknown*
Array — True
SFILE property Type— BSTR
Array — False

CHANGELINE method Enter different name if desired and mark
Export as True

STYLE argument Mutability — In
Type — Short
Array — False

Table 12-2: Example Export Object Parameters

COM IDLgrWindow Based Histogram Plot Generator IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 267

Tree View Item Property Configuration

CREATEPLOTS method Enter different name if desired and mark
Export as True

IMAGE argument Mutability — In
VROWS argument Type — Variant
VCOLS argument Array — True
Convert majority — False
VRGB argument Mutability — In
Type — short
Array — False
OPEN method Enter different name if desired and mark
Export as True
SFILE argument Mutability — In
Type—BSTR
Array — False

NOTE: You can choose not to export this
parameter. If so, the method follows the
path for cases where no argument is
defined. (You will need to modify the
Visua Basic code to read

Me. Axexport _grw ndow docl. OPEN()
instead of passing an argument.) If you do
choose to export this method, the argument
must either be anull string or afull file
path.

Table 12-2: Example Export Object Parameters

5. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

6. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. For a drawable object, .t | b and

IDL Connectivity Bridges COM IDLgrWindow Based Histogram Plot Generator

268

10.
11.

Example Code
Thetext filefor thisexample, com export _grw ndow _doc. t xt , islocated inthe
exanpl es/ doc/ bri dges/ COM subdirectory of the IDL distribution. This Visual
Basic .NET code can be copied from the text file and adopted for use in your COM
environment.

Chapter 12: Creating Custom COM Export Objects

.ocx files(named based on the object name) are created in the Output
directory.

Register the .ocx using r egsvr 32 export _grwi ndow_doc. ocx. See
“COM Registration Requirements’ on page 136 for details if needed.

Create anew Visua Basic .NET Windows Application and add the
export_grwi ndow doc O ass fileto thetoolbox. Select View — Toolbox
and select the desired tab. Right-click and select Add/Remove Items. Click on
the COM Components tab, place a checkmark next to the class file and click
OK.

Add the IDL export _grwi ndow_doc control to your form.

Replace the default form code with the text in the file referenced below. See
code comments for details.

After building and running the project, a Windows application interface will display a
histogram plot of an RGB image. You can change the linestyle of the plot by making
a selection from the listbox. You can also create a histogram plot for a new image by
clicking the button.

COM IDLgrWindow Based Histogram Plot Generator IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/COM/com_export_grwindow_doc.txt

Chapter 12: Creating Custom COM Export Objects 269

COM IDLitWindow Surface Manipulation

This drawabl e object exampleinherits from IDLitWindow and creates an ISURFACE
display in a COM control. A listbox in aVisua Basic .NET Windows applicationis
popul ated with manipulator string values that, when selected, allow you to draw
annotations, rotate, or zoom within the exported IDLitWindow control. You should
avoid exposing any manipulator that has an associated widget interface (such asa
profile line manipulator) since such widget functionality is not supported in objects
that subclass from IDLitWindow.

Example Code
The object definition file, export _i t wi nmani p_doc__defi ne. pro islocated
inthe exanpl es/ doc/ bri dges subdirectory of the IDL distribution.

Complete the following steps to duplicate this example:

1. InanIDL Editor window, open the object definition file by entering. COVPI LE
export _itwi nmani p_doc__defi ne. pro at the command prompt.

Note
Itisagood ideato test the functionality of an object before exporting it. After
compiling thefile, enter the following lines at the command line and make
sure the output iswhat is expected for this object.

oWn = OBJ_NEW"export_itw nmani p_doc")

oW n- >CHANGEMANI PULATOR, "annot ati on/oval "
Thiswill let you draw a oval annotation in the window. If you hit the Delete
key, the annotation will be removed. The available manipulator strings are
printed in the IDL output window.

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a COM export object by selecting File — New Project —
COM and browse to select export _i t wi nmani p_doc__defi ne. pro.
Click Open to load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in “ Specifying Information for
Exporting” on page 156. Refer to that section if you need more information
about the following items.

IDL Connectivity Bridges COM IDLitWindow Surface Manipulation

RSI_PROCODE/examples/doc/bridges/export_itwinmanip_doc__define.pro

270

Chapter 12: Creating Custom COM Export Objects

Set export object characteristics as described in the following table. When you
select the tree view item listed in the left column, configure the related
properties as noted in the right column.

Tree View Item Property Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

* Output classname
* Processname
» Output directory

export_itwinmanip_doc Drawable object equals True
CHANGEMANIPULATOR | Enter different nameif desired and
method mark Export as True
MANIPID argument M utability — In

Type— BSTR

Array — False

Export — True

Table 12-3: Example Export Object Parameters

Save the project by selecting File — Save project. Accept the default name
and location or make changes as desired.

Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. For a drawable object, .t | b and
.ocx files(named based on the object name) are created in the Output
directory.

Register the .ocx using r egsvr 32 export _i t wi nmani p_doc. ocx. See
“COM Registration Requirements’ on page 136 for details if needed.

Create anew Visua Basic .NET Windows Application and add the
export_itwi nmani p_doc d ass fileto the toolbox. Select View —
Toolbox and select the desired tab. Right-click and select Add/Remove [tems.

COM IDLitWindow Surface Manipulation IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 271

Select the COM Componentstab, place a checkmark next to the classfile,
and click OK.

10. Add theIDL export _i t wi nmani p_doc control to your form.

11. Replace the default form code with the text in the file referenced below. See
code comments for details.

Example Code
Thetext file for this example, com export _i t wi nmani p_doc. t xt, islocated in
the exanpl es/ doc/ bri dges/ COM subdirectory of the IDL distribution. This
Visual Basic .NET code can be copied from the text file and adopted for use in your
COM environment.

Note
This example exposes keyboard events. The value of the Delete key and other
standard keys are described in “Mouse and Keyboard Eventsin COM Export
Objects’ on page 197.

Build and run the project. Select a manipulator from the listbox to useit in the
IDLitWindow display. If you hit the keyboard Delete key while visualizations are
selected, they will be removed from the view.

IDL Connectivity Bridges COM IDLitWindow Surface Manipulation

RSI_PROCODE/examples/doc/bridges/COM/com_export_itwinmanip_doc.txt

272 Chapter 12: Creating Custom COM Export Objects

Tri-Window COM Export Example

Theexanpl es/ doc/ bri dges directory includes three object definition files that
inherit from the three types of drawable objects: IDLgrWindow, IDLitDirectWindow
and IDLitWindow. The following example uses the Export Bridge Assistant to create
ActiveX controls from these object definition files and then creates a Windows
applicationin Visual Basic .NET that includes the three controls.

Example Code
The abject definition files, i dl gr wvi ndowexanpl e__defi ne. pro,
i dlitdirectw ndowexanpl e__defi ne. pro, and
i dl i tw ndowexanpl e__defi ne. pro arelocated in the
exanpl es/ doc/ bri dges subdirectory of the IDL distribution.

Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the IDL
command line and then compl ete the following steps to export the three drawable
objects.

Note
Export Bridge Assistant details are available in * Specifying Information for
Exporting” on page 156. Refer to that section if you need more information about
the following items.

Wrap the IDLitDirectWindow Example

The abject definedini dl i t di rect wi ndowexanpl e__defi ne. pr o inherits from
IDLitDirectWindow and creates a drawing canvas that you can write on using your
mouse.

1. Select File —» New Project - COM, browse to select
i dlitdirectw ndowexanpl e__defi ne. pro fromthe
exanpl es/ doc/ bri dges directory, and click Open.

2. Set export object characteristics as described in the following table. When you
select the tree view item, listed in the left column, configure the related
properties as noted in the right column.

Tri-Window COM Export Example IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/idlgrwindowexample__define.pro
RSI_PROCODE/examples/doc/bridges/idlitdirectwindowexample__define.pro
RSI_PROCODE/examples/doc/bridges/idlitwindowexample__define.pro

Chapter 12: Creating Custom COM Export Objects

Tree View ltem

Property Configuration

IDL Export Bridge Project

Accept the default value or make
changes as desired:

» Output classname
* Process name
» Output directory

idlitdirectwindowexample

Drawable abject equals True

WINDOW _INDEX property

You do not need to export the
WINDOW _INDEX property asthe
control will always know it’s own index
number. You can leave all fields
unchanged.

MAKECURRENT method

Export — False. Thisisonly used
within methodsin the IDL source object
definition file.

Table 12-4: Example Export Object Parameters

273

3. Savethe project by selecting File —» Save project. Accept the default name
and location or make changes as desired.

4. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

5. Build the export object by selecting Build — Build object. The Build log

panel shows the results of the build process. For a drawable object, .t | b and
.ocx files(named based on the object name) are created in the Output

directory.

Wrap the IDLgrWindow Example

The abject definedini dl gr wi ndowexanpl e__defi ne. pr o inherits from
IDLgrwindow and displays a globe that can be rotated using your mouse.

1. Select File— New Project - COM, browse to select
i dl grwi ndowexanpl e__defi ne. pro fromtheexanpl es/ doc/ bri dges

directory, and click Open.

IDL Connectivity Bridges

Tri-Window COM Export Example

274 Chapter 12: Creating Custom COM Export Objects

2. Set export object characteristics as described in the following table. When you
select the tree view item, listed in the left column, configure the related
properties as noted in the right column.

Tree View Item Property Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

* Output classname
* Processname
» Output directory

idlgrwindowexample Drawable object equals True

CREATEOBJECTS method | Export — False. This method is not
caled from the COM client.

Table 12-5: Example Export Object Parameters

3. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

4. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

5. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. For a drawable object, .t | b and
.ocx files(named based on the object name) are created in the Output
directory.

Wrap the IDLitWindow Example

The abject definedini dl i t wi ndowexanpl e__defi ne. pr o inherits from
IDLitWindow and displays a surface in aview in which you can pan and zoom.

1. Select File —» New Project - COM, browse to select
i dlitw ndowexanpl e__defi ne. pro fromtheexanpl es/ doc/ bri dges
directory, and click Open.

2. Thereare no export object characteristics that must be modified, but you can
make changes to the default items as described in the following table. When

Tri-Window COM Export Example IDL Connectivity Bridges

Chapter 12: Creating Custom COM Export Objects 275

you select the tree view item, listed in the left column, configure the related
properties as noted in the right column.

Tree View Item Property Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

» Output classname
* Process name
» Output directory

idlitwindowexample Drawable abject equals True

Table 12-6: Example Export Object Parameters

Save the project by selecting File — Save project. Accept the default name
and location or make changes as desired.

Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. For a drawable object, .t | b and
.ocx files(named based on the object name) are created in the Output
directory.

Register the Controls and Create the Application

1

Register the . ocx files generated by the Export Bridge Assistant using
regsvr 32 (see“COM Registration Requirements’” on page 136 for details if
needed). If you kept the default names, you will need to register

i dl grwi ndowexanpl e. ocx, idlitdirectw ndowexanpl e. ocx, and

i dlitw ndowexanpl e. ocx.

Create anew Visual Basic .NET Windows Application and add the

i dl grwi ndowexanpl e d ass,idlitdirectw ndowexanpl e d ass,
andi dlitwi ndowexanpl e d ass filesto the toolbox. Select View —
Toolbox and select the desired tab. Right-click and select Add/Remove Items.
Select the COM Componentstab, place a checkmark next to the class files,
and click OK.

Add the three controls IDL to your form in the order of
i dl grwi ndowexanpl e O ass,idlitdirectw ndowexanpl e C ass
andi dl i t wi ndowexanpl e C ass from left to right.

IDL Connectivity Bridges Tri-Window COM Export Example

276 Chapter 12: Creating Custom COM Export Objects

/™ Triwindow Example

. . IDLitDirectyindowE xampls

... Captured MotifyBridge Method Output

Figure 12-1: Design-time View of Three Drawable Window Controls

4. Replace the default module code with the text in the file referenced below. See
code comments for details.

Example Code
Thetext file for thisexample, com export _tri wi ndow_doc. t xt, islocated in
the exanpl es/ doc/ bri dges/ COM subdirectory of the IDL distribution. This
Visual Basic .NET code can be copied from the text file and adopted for usein your
COM environment.

Tri-Window COM Export Example IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/COM/com_export_triwindow_doc.txt

Chapter 12: Creating Custom COM Export Objects 277

When you build and run the example, the output will appear similar to the following
figure.

5 Triwindow Example 10l =|

|DLgrwindowE xample |DLitDirectwindowE xample |DLitwindowE xample

Captured MaotifyBridge Method Output

Figure 12-2: Runtime View of Three Drawable Window Controls

Left-click and drag in the IDLgrWindow control to rotate the globe and follow the
instructionsin the IDLitDirectWindow control to draw in the window. In the
IDLitWindow, left-click on the surface and drag the mouse cursor to reposition the
object, or left-click on one of the view handles and drag up or down to zoom in or out.
The bottom label text will change when you move your mouse into or out of the
IDLgrwWindow- or IDLitDirectWindow-based controls asthe label isupdated with the
NotifyBridge output from the IDL object definition files.

IDL Connectivity Bridges Tri-Window COM Export Example

278 Chapter 12: Creating Custom COM Export Objects

Tri-Window COM Export Example IDL Connectivity Bridges

Chapter 13

Creating Custom
Java Export Objects

This chapter discusses the following topics.

About Java Export Object Examples 280 Drawable Java Export Examples
Nondrawable Java Export Example. 282

IDL Connectivity Bridges

279

280 Chapter 13: Creating Custom Java Export Objects

About Java Export Object Examples

An DL object can wrapped for use in a Java application using the Export Bridge
Assistant. For valuabl e information on the theory and architecture of awrapper object
created by the Export Bridge Assistant, see Chapter 7, “Using the Export Bridge
Assistant”.

This chapter provides several Java examples that incorporate the use of Java export
objects. Theseinclude:

* Nondrawable examples — show how to access the processing power of IDL in
a Java application by exchanging data with the IDL process, issuing IDL
commands, accessing IDL output.

» Drawable examples — contain the elements needed to create interactive |IDL
drawing windows and access to mouse events.

Note
You can quickly incorporate the processing power of IDL in a Java application by
including the pre-built Java connector wrapper object in your external application.
Use this option if you do not need custom methods or an interactive drawing
surface. See Chapter 10, “Using the Connector Object” for details and examples.

The general process for each of these examples involves the following:
1. CreatetheobjectinIDL.

2. Export the object using the Export Bridge Assistant, which creates the files
associated with the IDL object that is now wrapped in a Java export object

Wrapper.

3. Access the object in a Java application. This functionality automatically
includes stock methods (described in Chapter 9, “Using Exported Java
Objects’) in addition to custom methods you have chosen to export.

4. Compile and execute the application with a classpath reference to
javaidlb.jar.

Note
See “Writing IDL Objects for Exporting” on page 249 for information on how to
create custom IDL objects that can be successfully exported using the Export
Bridge Assistant. There are important object method and data type requirements
that must be met.

About Java Export Object Examples IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 281

Note
When you distribute an application, you will also need to share:
—the executable (.cl ass) file(s) including those generated by the Assistant
—the .pr o or .sav file that contains the custom IDL object definition
Any .pr o or .sav filesincluded with your application must be located in the IDL
path. Also, <RSI _DI R>/ resour ce/ bri dges/ export/javal/javaidl b.jar
must be in the Java classpath.

Note on Running the Java Examples

Examplesin this chapter provide Windows-style compilej avac (compile) and
java (run) commands. If you are running on a platform other than Windows, use
your platform’s path and directory separators and see “ Java Requirements’ on
page 136 for information about the br i dge_set up file, which sets additional
information.

Debugging Applications Using Export Objects

It can be challenging to determine what is happening in the IDL process associated
with awrapper object without the debugging features of the IDL devel opment
environment. For access to valuable debug information, consider using the
IDL_BRIDGE_DEBUG environment variable, described in “ Debugging” on

page 232.

IDL Connectivity Bridges About Java Export Object Examples

282 Chapter 13: Creating Custom Java Export Objects

Nondrawable Java Export Example

Nondrawable objects provide access to the enormous processing power of 1DL, but
do not provide IDL drawing capabilities. Thisis useful for applications that need the
data manipulation capabilities of IDL, but have no need for, or have independent
drawing capabilities.

Hello World Java Example with Additional Method

The following simple example creates an IDL object with a single function method
that accepts one argument, and walks through the process of exporting the object
using the Export Bridge Assistant. Once the export files are created, a simple Java
application shows how to access the object method and capture its output.

Complete the following steps to duplicate this example.

1. InanIDL Editor window, copy in the following code and save thefile as
hel | owor | dex__defi ne. pr o inyour working directory:

Met hod returns nessage based on presence or
absence of argunent.
FUNCTI ON hel | owor | dex: : Hel | oFrom who
I F (N_ELEMENTS(who) NE 0) THEN BEG N
nmessage = "Hello World from" + who
RETURN, nessage
ENDI F ELSE BEG N
nessage = 'Hello Wrld'
RETURN, nessage
ENDEL SE
END

Init returns object reference on successful
initialization.
FUNCTI ON hel l oworl dex: : INI'T
RETURN, 1
END

hj ect definition.
PRO hel | owor | dex__defi ne
struct = {helloworldex, $
who: ', $
nessage: ' ' $

END

Nondrawable Java Export Example IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 283

Note
Itisagood ideato test the functionality of an object before exporting it. After

compiling the file, enter the following lines at the command line and make
sure the output is what is expected for this object.

ohel l o = OBJ_NEW " HELLOAORLDEX")

PRI NT, ohel | o->Hel | oFrom()

PRI NT, ohello->HelloFrom(' M. Bill")

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a Java export object by selecting File — New Project — Java
and browse to select the hel | owor | dex__def i ne. pr o file. Click Open to
load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in “ Specifying Information for

Exporting” on page 156. Refer to that section if you need more information
about the following steps.

4. Thetop-level project entry in the left-hand tree panel is selected by default.
Thereisno need to modify the default properties shown in the right-hand
property panel, but you can enter different values if desired. Set other export
object characteristics as described in the following table. Select the tree view
item listed in the left column to configure the related propertiesin the right
column.

Tree View Item Parameter Configuration

IDL Export Bridge Project | Accept the default value or make changes:
» Output classname

* Process name

» OQutput directory

helloworldex Drawable object equals False

Package name helloworldex

Table 13-1: Example Export Object Parameters

IDL Connectivity Bridges Nondrawable Java Export Example

284

Chapter 13: Creating Custom Java Export Objects

Tree View ltem

Parameter Configuration

HELLOFROM method

Output method hame — accept the default
value, HELL OFROM

Return Type — JIDL String since this function
method returns a string message (as defined in
the IDL object definition structure)

Array — False since this method returns a
single string, not an array

Export — True

WHO argument

Mutability — In since the argument is not
passed back to the caller

Type— JIDL String since thisargument is
defined as a string in the IDL object definition

Array — False
Export — True

Table 13-1: Example Export Object Parameters

5. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

6. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. A subdirectory, named
hel | owor | dex (based on the object name), containsthe .j ava and .cl ass
files, and islocated in the Output directory.

Using the Export Wrapper Object

Thefollowing simple Java application uses the wrapper object created in the previous

section.

Example Code

Thefilefor this example, hel | owor | dex_exanpl e. j ava, islocated in the
exanpl es/ doc/ bri dges/j ava subdirectory of the IDL distribution.

Nondrawable Java Export Example

IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/java/helloworldex_example.java

Chapter 13: Creating Custom Java Export Objects 285

1

Tip

Open the file named hel | owor | dex_exanpl e. j ava in the previously
referenced directory and savethefileinthehel | owor | dex directory.

Open the Windows Command window by selecting Start — Run and enter
cmd in the textbox.

Use the cd command to change to the directory containing the
hel | owor | dex directory.

Reference the classpath of j avai dl b. j ar inthe compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing <RSI _DI R> with the IDL installation directory:

javac -classpath
". ;<RSI _DI R>\resource\bridges\export\java\javaidlb.jar"
hel | owor | dex\ hel | owor | dex_exanpl e. j ava

java -cl asspath
".; <RSI _DI R>\resource\bridges\export\java\javaidlb.jar"
hel | owor | dex. hel | owor | dex_exanpl e

See “Note on Running the Java Examples’ on page 281 for information on
executing Java commands on a non-Windows platform.

After compiling and running the project, the output message will appear in the
command window.

IDL Connectivity Bridges Nondrawable Java Export Example

286 Chapter 13: Creating Custom Java Export Objects

Drawable Java Export Examples

A Java export object that supports graphics must be based on a custom IDL object
that inheritsfrom IDLgrwindow, IDLitWindow, or IDLitDirectWindow (as described
in “Exporting Drawable Objects’ on page 252). Additionally, your IDL object must
also implement a set of listenersif you want to be able to respond to keyboard or
mouse events in the graphics window. These are described in “Event Handling” on
page 221. Examplesin this section include:

e “JavalDLgrWindow Based Histogram Plot Generator” on page 287 —
provides an object based on IDLgrWindow that creates a histogram plot for a
selected image file and lets you change the plot linestyle property.

e “JavalDLitWindow Surface Manipulation” on page 292 — includes a
drawable IDLitWindow example with ISURFACE functionality and a custom
method |ets you change the active manipulator. The main classis subclassed to
pass key eventsto IDL. In the OnKeyboard method, Delete key events are
captured and selected visualizations are del eted.

Drawable Java Export Examples IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects 287

Java IDLgrWindow Based Histogram Plot Generator

This drawable object example inherits from IDLgrWindow and creates a histogram
plot for a selected monochrome or RGB image file. While this example does contain
several custom methods including those for opening afile, creating the plots, and
changing plot characteristics, it does not use keyboard or mouse events. See “ Java
IDLitWindow Surface Manipulation” on page 292 for such an example.

Example Code
The abject definition file, export_grwi ndow _doc__defi ne. proislocatedin
the exanpl es/ doc/ bri dges subdirectory of the IDL distribution.

Complete the following steps to duplicate this example.

1. InanIDL Editor window, open the object definition file by entering. COMPI LE
export_grwi ndow doc__defi ne. pr o at the command prompt.

Note
Itisagood ideato test the functionality of an object before exporting it. After
compiling the file, enter the following lines at the command line and make
sure the output iswhat is expected for this object.

oPl ot Wndow = OBJ_NEW "export _grw ndow _doc")

oPl ot W ndow >CHANGELI NE, 2
Thiswill display athree channel histogram plot and change the plot linestyle
to dashed.

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a Java export object by selecting File — New Project — Java
and browseto select export _grw ndow_doc__defi ne. pro. Click Open to
load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in * Specifying Information for
Exporting” on page 156. Refer to that section if you need more information
about the following items.

4. Set export object characteristics as described in the following table. When you
select the tree view item listed in the left column, configure the related
properties as noted in the right column.

IDL Connectivity Bridges Java IDLgrWindow Based Histogram Plot Generator

RSI_PROCODE/examples/doc/bridges/export_grwindow_doc__define.pro

288 Chapter 13: Creating Custom Java Export Objects
Note
Set the Export parameter to True for all itemsin thislist unless otherwise
noted.
Tip

You can select multipleitemsin the tree view and set properties for the

group.

Tree View ltem

Property Configuration

IDL Export Bridge Project

Accept the default value or make changes
asdesired:

» Output classname
* Processname
» Output directory

export_grwindow_doc

Drawable object equals True

Package name

export_grwindow_doc

OMODEL property
OVIEW property
OXAXIS property

Type — JDLObjectl
Array — False

OXTEXT property

OYAXIS property

OYTEXT property

OPLOTCOLL property Type— JIDLObjectl
Array — True

SFILE property Type— JIDL String
Array — False

CHANGELINE method

Enter different name if desired and mark
Export as True

Table 13-2: Example Export Object Parameters

Java IDLgrWindow Based Histogram Plot Generator

IDL Connectivity Bridges

Chapter 13: Creating Custom Java Export Objects

Tree View Item

Property Configuration

STYLE argument Mutability — In
Type — JDLNumber
Array — False
CREATEPLOTS method | Enter different name if desired and mark
Export as True
IMAGE argument Mutability — In
VROWS argument Type — JDLNumber
VCOLS argument Array — True
Convert majority — False
VRGB argument Mutability — In
Type — JDLNumber
Array — False

OPEN method

Enter different name if desired and mark
Export as True

SFILE argument

Mutability — In
Type— JIDL String
Array — False

NOTE: You can choose not to export this
parameter. If so, the method follows the
path for cases where no argument is

defined. (You will need to modify the Java

code to read

export_grw ndow doc. OPEN() instead

of passing an argument.) If you do choose
to export this method, the argument must
either be anull string or afull file path.

Table 13-2: Example Export Object Parameters

289

5. Savethe project by selecting File —» Save project. Accept the default name
and location or make changes as desired.

IDL Connectivity Bridges

Java IDLgrWindow Based Histogram Plot Generator

290 Chapter 13: Creating Custom Java Export Objects

6. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. A subdirectory, named
export _grwi ndow _doc (based onthe abject name), containsthe .j ava and
.cl ass files, andislocated in the Output directory.

Using the Java Export Object

The following section describes using the Java export object in a simple application.

Example Code
Thefilefor this example, export _grwi ndow_doc_exanpl e. j ava, islocated in
the exanpl es/ doc/ bri dges/j ava subdirectory of the IDL distribution.

1. Openthefile named export _grw ndow_doc_exanpl e. j ava inthe
location referenced above and copy it to your <out put
di rect ory>/ export_grwi ndow_doc directory where <out put
di r ect or y> was the directory specified as the Output directory in the
Assistant.

2. Open the Windows Command window by selecting Start — Run and enter
cmd in the textbox.

3. Usethe cd command to change to the directory containing the
export_grwi ndow _doc directory.

4. Referencethe classpath of j avai dI b. j ar inthe compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing <RSI _DI R> with the IDL installation directory:

javac -classpath
".; <RSI _DI R>\resource\bridges\export\java\javaidlb.jar"
export _grwi ndow_doc\ export _grwi ndow_doc_exanpl e. j ava
java -cl asspath
".; <RSI _DI R>\resource\bridges\export\java\javaidlb.jar"
export _grwi ndow_doc. export _grw ndow_doc_exanpl e

Tip
See “Note on Running the Java Examples’ on page 281 for information on
executing Java commands on a non-Windows platform.

Java IDLgrWindow Based Histogram Plot Generator IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/java/export_grwindow_doc_example.java

Chapter 13: Creating Custom Java Export Objects 291

After compiling and running the project, a Javainterface will display a histogram plot
of an RGB image. You can change the linestyle of the plot by making a selection

from the listbox. You can also create a histogram plot for anew image by clicking the
button.

IDL Connectivity Bridges Java IDLgrWindow Based Histogram Plot Generator

292 Chapter 13: Creating Custom Java Export Objects

Java IDLitWindow Surface Manipulation

This drawabl e object exampleinherits from IDLitWindow and creates an ISURFACE
display in a Java application. A listbox is populated with manipulator string values
that, when selected, allow you to draw annotations, rotate, or zoom within the
exported IDLitWindow object. You should avoid exposing any manipulator that has
an associated widget interface (such as a profile line manipulator) since such widget
functionality is not supported in objects that subclass from | DLitWindow.

Example Code
The abject definition file, export _i t wi nmani p_doc__defi ne. pro islocated
inthe exanpl es/ doc/ bri dges subdirectory of the IDL distribution.

Complete the following steps to duplicate this example.

1. InanIDL Editor window, open the object definition file by entering. COMPI LE
export _itwi nmani p_doc__defi ne. pro at the command prompt.

Note
Itisagood ideato test the functionality of an object before exporting it. After
compiling the file, enter the following lines at the command line and make
sure the output is what is expected for this object.

oWn = OBJ_NEW"export_itw nmani p_doc")

OW n- >CHANGEMANI PULATOR, "annot ati on/ oval "
Thiswill let you draw a oval annotation in the window. If you hit the Delete
key, the annotation will be removed. The available manipulator strings are
printed in the IDL output window.

2. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

3. Select to create a Java export object by selecting File — New Project — Java
and browse to select export _i twi nmani p_doc__defi ne. pro. Click
Open to load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in “ Specifying Information for
Exporting” on page 156. Refer to that section if you need more information
about the following items.

Java IDLitWindow Surface Manipulation IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/export_grwindow_doc__define.pro

Chapter 13: Creating Custom Java Export Objects

293

4. Set export object characteristics as described in the following table. When you

select the tree view item listed in the left column, configure the related

properties as noted in the right column.

Tree View ltem

Property Configuration

IDL Export Bridge Project

Accept the default value or make
changes as desired:

* Output classname
* Processname
» Output directory

export_itwinmanip_doc

Drawable object equals True

Package name export_itwinmanip_doc
CHANGEMANIPULATOR | Enter different nameif desired and
method mark Export as True

MANIPID argument

M utability — In
Type— JIDLString
Array — Fase
Export — True

Table 13-3: Example Export Object Parameters

5. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

6. Verify that the object elements you want to export are listed in the Export log
panel. If the expected items are not present, one or more items may still have
an UNSPECIFIED field value that must be changed.

7. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. A subdirectory, named

export _itw nmani p_doc (based on the object name), containsthe .j ava
and .cl ass files, and islocated in the Output directory.

IDL Connectivity Bridges

Java IDLitWindow Surface Manipulation

294 Chapter 13: Creating Custom Java Export Objects

Using the Java Export Object

The following section describes using the Java export object in asimple application.

Example Code
Thefilesfor thisexample, export _i t wi nmani p_doc_exanpl e. j ava, and
export _itw nnmani p_del et e. j ava, arelocated in the
exanpl es/ doc/ bri dges/j ava subdirectory of the IDL distribution.

In this example, theexport _i t wi nmani p_doc_exanpl e. j ava file contains the
code to display the listbox and IDLitWindow drawing canvas. The

export _itwi nmani p_del et e. j ava file subclasses the previous file and handles
key press events, passing them on to the IDL object OnKeyboard method so that
selected visualizations can be deleted.

1. Openthefilesnamed export _i t wi nnmani p_doc_exanpl e. j ava and
export _itw nmani p_del ete.java inthelocation referenced above and
copy them to your <out put direct ory>/ export _itwi nmani p_doc
directory where <out put di r ect or y> wasthe directory specified as the
Output directory in the Assistant.

2. Open the Windows Command window by selecting Start — Run and enter
cnd in the textbox.

3. Usethe cd command to change to the directory containing the
export _itw nmani p_doc directory.

4. Referencethe classpath of j avai dI b. j ar inthe compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing <RSI _DI R> with the IDL installation directory:

javac -classpath
".; <RSI _DI R>\resource\bridges\export\java\javaidlb.jar"
export _itwi nmani p_doc*.java

java -cl asspath
".; <RSI _DI R>\resource\bridges\export\java\javaidlb.jar"
export _i twi nmani p_doc. export _i twi nmani p_doc_exanpl e

Tip
See “Note on Running the Java Examples’ on page 281 for information on
executing Java commands on a non-Windows platform.

After compiling and running the project, a JJavainterface will display aasurfacein an
IDLitWindow. Select a manipulator from the listbox to use it in the IDLitWindow

Java IDLitWindow Surface Manipulation IDL Connectivity Bridges

RSI_PROCODE/examples/doc/bridges/java/export_itwinmanip_doc_example.java
RSI_PROCODE/examples/doc/bridges/java/export_itwinmanip_delete.java

Chapter 13: Creating Custom Java Export Objects 295

display. If you hit the keyboard Delete key while visualizations are sel ected, they will
be removed from the view.

IDL Connectivity Bridges Java IDLitWindow Surface Manipulation

296 Chapter 13: Creating Custom Java Export Objects

Java IDLitWindow Surface Manipulation IDL Connectivity Bridges

Part lll: Appendices

Appendix A

IDL Java Object API

This chapter describes the IDL Java package interfaces, classes and errors.

PackageSummary 300

IDL Connectivity Bridges 299

300 Appendix A: IDL Java Object API

Package Summary

This chapter describesthe IDL Java Package in aformat similar to JavaDoc.

Class Summary

I nterfaces

JI DLConponent Li st ener The listener interface for receiving component
events (expose, resize) on a JIDL Canvas.

JI DLKeyLi st ener The listener interface for receiving keyboard
events (key pressed, key released) on a
JIDLCanvas.

JI DLMbuseli st ener The listener interface for receiving mouse events
from IDL (press, release, enter, and exit) on a
JIDLCanvas.

JI DLMbuseMoti onLi stener | Thelistener interface for receiving mouse motion
eventsfrom IDL (move and drag) on a

JIDL Canvas.

JI DLNoti fyLi st ener The listener interface for receiving notify events
from IDL.

JI DLNunber The JIDLNumber class wraps a primitive java
number as amutable object usable by the Java-IDL
Export bridge.

JI DLObj ect | The interface that wrapped IDL objects must
implement.

JI DLQut put Li st ener The listener interface for receiving output events
from IDL.

Classes

JI DLArray The JDLArray classwraps a Java array as an
object usable by the Java-1IDL Export bridge.

J1 DLBool ean The JDLBoolean class wraps aboolean as a
mutable object usable by the Java-IDL Export
bridge.

Package Summary IDL Connectivity Bridges

Appendix A: IDL Java Object API

301

Class Summary

JI DLByt e The JIDLByte class wraps a byte as a mutable
object usable by the Java-1DL Export bridge.

JI DLCanvas This classwraps an IDL object of type
IDLitWindow in ajava.awtCanvas providing direct
rendering of the object from IDL.

JI DLChar The JIDL Char class wraps a char as a mutable
object usable by the Java-1DL Export bridge.

JI DLConst Contains constants used by the Java-IDL wrapper
classes.

JI DLDoubl e The JIDLDouble class wraps adouble as a
mutabl e object usable by the Java-IDL Export
bridge.

J1 DLFI oat The JIDLFloat class wraps afloat as a mutable
object usable by the Java-1DL Export bridge.

JI DLI nt eger The JIDLInteger class wraps an int as a mutable
object usable by the Java-1DL Export bridge.

JI DLLong The JIDLLong class wraps along as a mutable
object usable by the Java-1DL Export bridge.

JI DLQoj ect This class wraps an IDL object.

JI DLShort The JIDL Short class wraps a short as a mutable
object usable by the Java-IDL Export bridge.

JIDLString The JIDL String class wraps a String as a mutable
object usable by the Java-1DL Export bridge.

Errors

JI DLAbor t edExcepti on Thrown when acall to IDL isinterrupted by an
abort request.

JI DLBusyException Thrownwhen acall to IDL isnot executed because
the current IDL processis busy.

JI DLException An unchecked exception thrown when acall to
IDL encounters an error.

IDL Connectivity Bridges

Package Summary

302 Appendix A: IDL Java Object API

JIDLAbortedException

Declaration

public class Jl DLAbortedExcepti on extends Jl DLExcepti on
i npl enents java.io. Serializable

j ava. |l ang. Qbj ect

|
+--java. |l ang. Thr onabl e

I
+--java.l ang. Error

+--comidl.javaidl.Jl DLException

I
+--comidl.javaidl.Jl DLAbort edExcepti on

All Implemented Interfaces:
java.io. Serializable
Description

An unchecked exception thrown when acall to IDL isinterrupted by an abort request.

Inherited Member Summary

Methods inherited from interface JIDLException

get Error Code(), toString()
Methods inherited from class Obj ect

JIDLAbortedException IDL Connectivity Bridges

Appendix A: IDL Java Object API 303

Inherited Member Summary

equal s(oj ect), getd ass(), hashCode(), notify(),

notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Methodsinherited from class Thr owabl e

filllnStackTrace(), getCause(), getlLocalizedMessage(),
get Message(), getStackTrace(), initCause(Throwable),
printStackTrace(PrintWiter),
printStackTrace(PrintWiter),
printStackTrace(PrintWiter),

set St ackTrace(St ackTraceEl ement[])

IDL Connectivity Bridges JIDLAbortedException

304 Appendix A: IDL Java Object API

JIDLArray

Declaration
public class JIDLArray inplenents java.i 0. Serializable

j ava. |l ang. Qbj ect

|
+--comidl.javaidl.JIDLArray

All Implemented Interfaces:

java.io. Serializable

Description

The JDLArray class wraps a Java array as an object usable by the Java-IDL Export
bridge.

Wraps arrays of type boolean, byte, char, short, int, long, float, double, String, and
JDLObjectl.

When retrieving the object, the calling code must cast the Object wrapped by
JDLATrray to the proper * array type. For example:

int[] nyNativeArray = ...;

/!l Create a wrapped array so it may be used in the bridge
JIDLArray arr = new JlI DLArray(nyNativeArray)

/1 ... do something in the bridge to nodify the array ...

/1 Now cast the resultant array to the expected type
int[] newNative = (int[])arr.arrayVal ue();

Member Summary
Constructors
JIDLArray(java.l ang. Obj ect arr)
Construct aJIDLArray from a native array
Methods

JIDLArray IDL Connectivity Bridges

Appendix A: IDL Java Object API

305

Member Summary

java. |l ang. Obj ect

arrayVal ue()
Get the native array that is wrapped by this object

java.lang. String

get Cl assNane()
Get the classname of the wrapped array.

java. |l ang. Obj ect

get Val ue()
Get the native array that is wrapped by this object

voi d set Val ue(JI DLArray arr)
Set the native array that is wrapped by this object
voi d set Val ue(j ava. |l ang. Obj ect arr)

Set the native array that is wrapped by this object

java.lang. String

toString()

Inherited Member Summary

Methods inherited from class Obj ect

equal s(bj ect),

i nt)

get Cl ass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,

Constructors
JIDLArray(Object)

public JIDLArray(j ava. |l ang. Qbj ect arr)

Construct a JIDLArray from anative array

Parameters:

arr - the native array to wrap for use in the export bridge (Must be an array of type
boolean, byte, char, short, int, long, float, double, String, or JIDL Objectl.)

Methods

arrayValue()

public java.l ang. Cbj ect arrayVal ue()

IDL Connectivity Bridges

JIDLArray

306

Appendix A: IDL Java Object API

Get the native array that is wrapped by this object
Returns:

the native array to wrap for use in the export bridge returned as an object. The array
will be of type boolean, byte, char, short, int, long, float, double, String, or
JDLObjectl.

getClassName()

public java.lang. String getd assNane()
Get the classname of the wrapped array.

Returns:

The classname of the wrapped array.

getValue()

public java.l ang. Obj ect getVal ue()
Get the native array that is wrapped by this object

Returns:

the native array to wrap for use in the export bridge returned as an object. The array
will be of type boolean, byte, char, short, int, long, float, double, String, or
JDLObjectl.

setValue(JIDLArray)

public void setValue(comidl.javaidl.JIDLArray arr)
Set the native array that is wrapped by this object
Parameters:

arr - the native array to wrap for usein the export bridge (Must be an array of type
boolean, byte, char, short, int, long, float, double, String, or JIDLObjectl.)

setValue(Object)

JIDLArray

public void setVal ue(j ava.l ang. Qbj ect arr)
Set the native array that is wrapped by this object
Parameters:

arr - the native array to wrap for usein the export bridge (Must be an array of type
boolean, byte, char, short, int, long, float, double, String, or JIDLObjectl.)

IDL Connectivity Bridges

Appendix A: IDL Java Object API 307

toString()

public java.lang. String toString()
Overrides:

t oSt ri ng inclass hj ect

IDL Connectivity Bridges JIDLArray

308 Appendix A: IDL Java Object API

JIDLBoolean

Declaration

public class Jl DLBool ean inpl enments JI DLNunber
java.io. Serializable

j ava. |l ang. Qbj ect

+--comidl.javaidl.Jl DLBool ean

All Implemented Interfaces:

JI DLNunber, java.io. Serializable

Description
The JIDLBoolean class wraps a boolean as a mutable object usable by the Java-1DL
Export bridge.
Member Summary
Constructors
J1 DLBool ean(bool ean val ue)
Construct a wrapper object.
JI DLBool ean(JI DLNurrber val ue)
Construct a wrapper object.
Methods
bool ean bool eanVal ue()
Return the value of the wrapped primitive
byte byt eVal ue()
Return the value of the wrapped primitive
char char Val ue()
Return the value of the wrapped primitive
doubl e doubl eVal ue()
Return the value of the wrapped primitive

JIDLBoolean IDL Connectivity Bridges

Appendix A: IDL Java Object API 309
Member Summary
f 1 oat f 1 oat Val ue()
Return the value of the wrapped primitive
i nt i nt Val ue()
Return the value of the wrapped primitive
| ong | ongVal ue()
Return the value of the wrapped primitive
voi d set Val ue(bool ean val ue)
Change the value of the wrapper object
voi d set Val ue(JI DLNunber val ue)
Change the value of the wrapper object
short short Val ue()
Return the value of the wrapped primitive
java.lang. String | toString()
Inherited Member Summary
Methods inherited from class Obj ect
equal s(Obj ect), getd ass(), hashCode(), notify(),
in(r)l:i)fyAl (), wait(long, int), wait(long, int), wait(long,
Constructors
JIDLBoolean(boolean)
publi ¢ JI DLBool ean(bool ean val ue)
Construct a wrapper object.
Parameters:
val ue - value to wrap for use in the export bridge
JIDLBoolean(JIDLNumber)
public Jl DLBool ean(com i dl .javaidl . Jl DLNunber val ue)
Construct a wrapper object.
IDL Connectivity Bridges JIDLBoolean

310 Appendix A: IDL Java Object API

Parameters:

val ue - JIDLNumber to wrap for use in the export bridge
Methods

booleanValue()

publ i ¢ bool ean bool eanVal ue()

Return the value of the wrapped primitive
Specified By:

booleanValue in interface JIDL Number
Returns:

value that is wrapped by this object
byteValue()

public byte byteVal ue()
Return the value of the wrapped primitive

Specified By:
byteValue in interface JIDL Number
Returns:

value that is wrapped by this object

charValue()
publi ¢ char charVal ue()
Return the value of the wrapped primitive
Specified By:
charValue in interface JIDLNumber
Returns:

value that is wrapped by this object
doubleValue()

publ i ¢ doubl e doubl eVal ue()

JIDLBoolean IDL Connectivity Bridges

Appendix A: IDL Java Object API 311

Return the value of the wrapped primitive
Specified By:
doubleVauein interface JIDL Number
Returns:
value that is wrapped by this object
floatValue()
public float floatVal ue()
Return the value of the wrapped primitive
Specified By:
floatValue in interface JIDL Number
Returns:
value that is wrapped by this object
intValue()
public int intValue()
Return the value of the wrapped primitive
Specified By:
intValue in interface J DL Number
Returns:
value that is wrapped by this object
longValue()
public I ong | ongVal ue()
Return the value of the wrapped primitive
Specified By:
longValue in interface JI DL Number
Returns:

value that is wrapped by this object

IDL Connectivity Bridges JIDLBoolean

312 Appendix A: IDL Java Object API

setValue(boolean)

public void setVal ue(bool ean val ue)

Change the value of the wrapper object

Parameters:

val ue - primitive value to wrap for use in the export bridge
setValue(JIDLNumber)

public void setValue(comidl.javaidl.Jl DLNunber val ue)

Change the value of the wrapper object

Specified By:

setValuein interface JIDL Number

Parameters:

val ue - JIDLNumber to wrap for use in the export bridge
shortValue()

public short short Val ue()
Return the value of the wrapped primitive

Specified By:
shortVaue in interface JIDLNumber
Returns:

value that is wrapped by this object
toString()

public java.lang. String toString()
Overrides:

toStringinclassbj ect

JIDLBoolean IDL Connectivity Bridges

Appendix A: IDL Java Object API 313

JIDLBusyException

Declaration

public class Jl DLBusyExcepti on extends JI DLException inpl enents
java.io. Serializable

j ava. |l ang. Qbj ect

|
+--java. |l ang. Thr owabl e

I
+--java.l ang. Error

+--comidl.javaidl.Jl DLException

I
+--comidl.javaidl.Jl DLBusyExcepti on

All Implemented Interfaces:
java.io. Serializable
Description

An unchecked exception thrown when acall to IDL is hot executed because the
current IDL processis busy.

Inherited Member Summary

Methodsinherited from interface JIDL Exception

get Error Code(), toString()
Methods inherited from class Obj ect

IDL Connectivity Bridges JIDLBuUsyException

314 Appendix A: IDL Java Object API

Inherited Member Summary

equal s(oj ect), getd ass(), hashCode(), notify(),

notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Methodsinherited from class Thr owabl e

filllnStackTrace(), getCause(), getlLocalizedMessage(),
get Message(), getStackTrace(), initCause(Throwable),
printStackTrace(PrintWiter),
printStackTrace(PrintWiter),
printStackTrace(PrintWiter),

set St ackTrace(St ackTraceEl ement[])

JIDLBuUsyException IDL Connectivity Bridges

Appendix A: IDL Java Object API 315

JIDLByte

Declaration

public class JIDLByte inplenments Jl DLNunber,
java.io. Serializable

j ava. |l ang. Qbj ect

I
+--comidl.javaidl.JI DLByte

All Implemented Interfaces:

JI DLNunber, java.io. Serializable

Description
The JIDL Byte class wraps a byte as a mutable object usable by the Java-IDL Export
bridge.
Member Summary
Constructors
JI DLByt e(byt e val ue)
Construct awrapper object.
JI DLByt e(JI DLNunber val ue)
Construct awrapper object.
Methods
bool ean bool eanVal ue()
Return the value of the wrapped primitive.
byt e byt eVal ue()
Return the value of the wrapped primitive
char char Val ue()
Return the value of the wrapped primitive
doubl e doubl eVal ue()
Return the value of the wrapped primitive

IDL Connectivity Bridges JIDLByte

316 Appendix A: IDL Java Object API

Member Summary

fl oat f 1 oat Val ue()
Return the value of the wrapped primitive

int i nt Val ue()
Return the value of the wrapped primitive

| ong | ongVal ue()
Return the value of the wrapped primitive

voi d set Val ue(byt e val ue)
Change the value of the wrapper object

voi d set Val ue(JI DLNunber val ue)
Change the value of the wrapper object

short short Val ue()
Return the value of the wrapped primitive

java.lang. String toString()

Inherited Member Summary

Methodsinherited from class Obj ect

equal s(Obj ect), getd ass(), hashCode(), notify(),
noti fyAll (), wait(long, int), wait(long, int), wait(long,
int)

Constructors

JIDLByte(byte)
public JI DLByte(byte val ue)
Construct a wrapper object.
Parameters:
val ue - value to wrap for use in the export bridge
JIDLByte(JIDLNumber)

public JIDLByte(comidl.javaidl.Jl DLNunber val ue)
Construct a wrapper object.

JIDLBYyte IDL Connectivity Bridges

Appendix A: IDL Java Object API 317

Parameters:

val ue - JIDLNumber to wrap for use in the export bridge
Methods

booleanValue()

publ i ¢ bool ean bool eanVal ue()

Return the value of the wrapped primitive.
Specified By:

booleanValue in interface JJIDL Number
Returns:

t r ue if non-zero, f al se otherwise

byteValue()

public byte byteVal ue()
Return the value of the wrapped primitive

Specified By:
byteValue in interface JIDL Number
Returns:

value that is wrapped by this object
charValue()

publi ¢ char charVal ue()
Return the value of the wrapped primitive
Specified By:
charValue in interface JIDL Number
Returns:

value that is wrapped by this object
doubleValue()

publ i ¢ doubl e doubl eVal ue()

IDL Connectivity Bridges JIDLByte

318

JIDLByte

Return the value of the wrapped primitive
Specified By:

doubleVauein interface JIDL Number
Returns:

value that is wrapped by this object

floatValue()

public float floatVal ue()
Return the value of the wrapped primitive
Specified By:
floatValue in interface JIDLNumber
Returns:

value that is wrapped by this object

intValue()

public int intValue()
Return the value of the wrapped primitive

Specified By:
intValue in interface JIDL Number
Returns:

value that is wrapped by this object

longValue()

public I ong | ongVal ue()
Return the value of the wrapped primitive
Specified By:
longValue in interface JIDL Number
Returns:

value that is wrapped by this object

Appendix A: IDL Java Object API

IDL Connectivity Bridges

Appendix A: IDL Java Object API 319

setValue(byte)
public void setVal ue(byte val ue)
Change the value of the wrapper object
Parameters:
val ue - primitive value to wrap for use in the export bridge
setValue(JIDLNumber)
public void setValue(comidl.javaidl.Jl DLNunber val ue)
Change the value of the wrapper object
Specified By:
setValuein interface JIDL Number
Parameters:
val ue - JIDLNumber to wrap for use in the export bridge

shortValue()

public short short Val ue()
Return the value of the wrapped primitive

Specified By:
shortValue in interface J DL Number
Returns:
value that is wrapped by this object
toString()
public java.lang. String toString()
Overrides:

toString inclassbj ect

IDL Connectivity Bridges JIDLByte

320 Appendix A: IDL Java Object API

JIDLCanvas

Declaration

public abstract class JlDLCanvas extends java.awt. Canvas

i npl enents JI DLObj ectl, java.awt.event. Conponent Li st ener,

j ava. aw . event . KeyLi st ener, java.awt.event. Museli st ener,
j ava. awm . event . MouseMt i onLi st ener, JI DLMbuseLi st ener,

JI DLMbuseMbt i onLi st ener, Jl DLKeyLi stener, JlDLConponent Li stener,
J1 DLCur sor Support

j ava. |l ang. Obj ect
I
+--j ava. awt . Conponent
I
+--j ava. awt . Canvas

+--comidl.javaidl.Jl DLCanvas

All Implemented Interfaces:

j avax. accessi bility. Accessi bl e,

j ava. aw . event . Conponent Li stener, java.util.EventListener,
java. awm . i mage. | mageCbser ver, Jl DLConponent Li st ener,

JI DLCur sor Support, JIDLKeyListener, JIDLMuseli stener,

JI DLMbuseMot i onLi stener, JIDLObjectl,

j ava. awm . event . KeyLi st ener, java.awt. MenuCont ai ner,

j ava. awm . event . Mbuseli st ener,

j ava. awm . event . MouseMt i onLi stener, java.io. Serializable

Description

This classwraps an IDL abject of type IDLitWindow in ajava.awtCanvas providing
direct rendering of the object from IDL.

Note
JDLCanvasis not supported on Macintosh OS X.

In many of the methods of this class, one or more flags are required to be specified
for parameters being passed to or from the bridge. These flags follow the following
guidelines:

For all types of parameters (subclasses of JJIDLNumber, JIDL String, J DL Objectl and
JDLATrray), aflag should be set that determines whether the parameter isin-only

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 321

(const) or in-out (we expect it to be changed by IDL). The constants that determine
this are either JIDLConst. PARMFLAG_CONST or
JDLConst. PARMFLAG_IN_OUT.

For parameters that are arrays, a flag should be set that tells the bridge whether the
array isto be convolved when passed to IDL. If the PARM_IN_OUT flag is set, this
flag will also tell the bridge whether to convolve the array when it is copied back to
Java. The constants that determine this are either

JDLConst. PARMFLAG_CONVMAJORITY or

JDLConst. PARMFLAG_NO_CONVMAJORITY.

For example, if the parameter in question isan array that isto be modified by IDL (in-
out) and needs to be convolved when passed to and from IDL, we would set its argpal
array member as follows:

argpal [2] = JIDLConst. PARMFLAG | N OUT | JI DLConst. PARMFLAG CONV

MAJCRI TY;
Member Summary

Fields

static int | DL_SOFTWARE _RENDERER
Internal use

static int OPENGL_ RENDERER
Internal use

Constructors
JI DLCanvas(j ava.l ang. String sC ass, int
i OPSFl ags, java.lang. String sProcessNane)
Construct aJIDLCanvas
JI DLCanvas(j ava.l ang. String sd ass,
java.lang. String sProcessNane)
Construct a JIDL Canvas Note that constructing the
JIDLObject does NOT cresate the object on the IDL-side of
the bridge.

Methods

voi d abort ()

Requests that the IDL process containing the underlying
IDL object abort its current activity.

IDL Connectivity Bridges JIDLCanvas

322

JIDLCanvas

Appendix A: IDL Java Object API

Member Summary

voi d

addl DLConponent Li st ener (JI DLConponent Li st ener
|listener)
Adds the specified JIDL ComponentListener to alist of

listeners that receive notification of Component events.

voi d

addl DLKeyLi st ener (JI DLKeyLi st ener |istener)
Adds the specified JIDLKeyL istener to alist of listeners
that receive notification of Key events.

voi d

addl DLMbuselLi st ener (JI DLMouselLi st ener |istener)
Adds the specified IDLMousel istener to alist of listeners
that receive notification of Mouse events.

voi d

addl DLMouseMot i onLi st ener

(JI DLMouseMot i onLi st ener |istener)

Adds the specified IDLMouseMotionListener to alist of
listeners that receive notification of MouseMotion events.

voi d

addl DLNot i fyLi stener (JI DLNot i fyLi st ener
|listener)
Adds the specified IDL notify listener to receive IDL

notification events on this object.

voi d

addl DLQut put Li st ener (JI DLQut put Li st ener
|listener)

Adds the specified IDL output listener to receive IDL
output events on this object.

java. |l ang. Obj ect

cal | Function(java.lang. String sMet hodNane, int
i Pal Fl ag)

Cdll IDL function that accepts zero parameters.

java. | ang. Obj ect

cal | Function(java.lang. String sMet hodNane, int
argc, java.lang.Object argv, int[] argpal, int
i Pal Fl ag)

Call IDL function.

voi d cal | Procedure(java.l ang. String sMet hodNane)
Call IDL procedure that accepts zero parameters.
voi d cal | Procedure(java.lang. String sMet hodNane, int

argc, java.lang. Object argv, int[] argpal)

Call IDL procedure.

IDL Connectivity Bridges

Appendix A: IDL Java Object API

323

Member Summary

voi d

conmponent H dden(j ava. awt . event . Conponent Event
e)
Called when the component is hidden.

voi d

conmponent Moved(j ava. awm . event . Conponent Event e)
Called when the component is moved.

voi d

conponent Resi zed(j ava. awt . event . Conponent Event
e)
Internal use.

voi d

conponent Shown(j ava. awt . event . Conponent Event e)
Called when the component is shown.

voi d

createObj ect ()
Create the wrapped object by calling IDL’s ::INIT method.

voi d

createObj ect(int argc, java.lang. Object argv,
int[] argpal)
Create the wrapped object by calling IDL’s ::INIT method.

voi d

destroyoj ect ()
Destroys the underlying IDL object associated with the

wrapper.

voi d

draw()
Internal use.

voi d

executeString(java.lang. String sCd)
Execute the given command string in IDL.

java.lang. String

get G assNane()
Get the class name of the object.

| ong

get Cooki e()
Internal use.

java.lang. String

get | DLObj ect G assNane()
Retrieves the IDL object class nhame of the underlying IDL
object.

java.lang. String

get | DLObj ect Vari abl eNane()
When the underlying IDL object was created in the IDL
process, it was assigned a variable name.

java. |l ang. Obj ect

getl DLVari abl e(j ava.l ang. String sVar)
Given avariable name, return the IDL variable.

IDL Connectivity Bridges

JIDLCanvas

324

Appendix A: IDL Java Object API

Member Summary

java.lang. String

get Qbj Vari abl eNane()
Get the IDL Variable name of the given object

java.lang. String

get ProcessNane()
Returns the name of the process that contains the
underlying IDL object.

java. | ang. Obj ect

get Property(java.lang. String sProperty, int
i Pal Fl ag)
Call IDL getProperty method to get named property.

voi d

| DLconponent Exposed(JI DLCbj ect | obj)
Called when the JIDLCanvas is exposed.

voi d

| DLconponent Resi zed(JI DLOoj ect | obj,
j ava. awt . event . Conponent Event e)
Called when the JIDLCanvas is resi zed.

voi d

| DLkeyPressed(JI DLObj ect| obj,

java. awt . event . KeyEvent e, int x, int y)
Called when the JIDL Canvas has focus and akey is
pressed.

voi d

| DLkeyRel eased(JI DLObj ect| obj,

java. awt . event . KeyEvent e, int x, int y)
Called when the JIDL Canvas has focus and akey is
released.

voi d

| DLmouseDr agged(JI DLCbj ect] obj,
j ava. awt . event . MouseEvent e)

Called when the mouse is dragged in a JIDL Canvas.

voi d

| DLmouseEnt er ed(JI DLCbj ect] obj,
j ava. awt . event . MouseEvent e)
Called when the mouse enters a JI DL Canvas.

voi d

| DLmouseExi t ed(JI DLObj ect| obj,
j ava. awt . event . MouseEvent e)
Called when the mouse exits a JIDL Canvas.

voi d

| DLmouseMoved(JI DLObj ect 1 obj,
j ava. awt . event . MouseEvent e)_
Called when the mouse is moved in a JIDL Canvas.

voi d

| DLnousePr essed(JI DLOoj ect | obj,

j ava. awt . event . MouseEvent e)
Called when the mouse is pressed in a JIDL Canvas.

JIDLCanvas

IDL Connectivity Bridges

Appendix A: IDL Java Object API 325
Member Summary

voi d | DLmouseRel eased(JI DLCbj ect| obj,
java. awt . event . MouseEvent e)
Called when the mouse is released in a JIDL Canvas.

voi d initListeners()
Initialize listeners.

bool ean i sFocusTraversabl e()
Internal use.

bool ean i sCbj Created()
Determine if object has been created successfully.

bool ean i sCbj ect Creat ed()
Determine if object has been created successfully.

bool ean i sCbj ect Di spl ayabl e()

voi d keyPressed(j ava. awt . event . KeyEvent e)
Internal use.

voi d keyRel eased(j ava. awt . event . KeyEvent e)
Internal use.

voi d keyTyped(j ava. awt . event . KeyEvent e)
Internal use.

i nt mapl DLCur sor ToJavaCur sor (j ava. |l ang. String
i dl Cursor)
Maps the IDL cursor to a suitable Java cursor.

voi d moused i cked(j ava. awmt . event . MouseEvent e)
Internal use.

voi d nmouseDr agged(j ava. awmt . event . MouseEvent e)
Internal use.

voi d nmouseEnt er ed(j ava. awmt . event . MbuseEvent e)
Internal use.

voi d nmouseExi t ed(j ava. awt . event . MouseEvent e)
Internal use.

voi d nmouselMbved(j ava. awt . event . MouseEvent e)
Internal use.

voi d nmousePr essed(j ava. awm . event . MouseEvent e)
Internal use.

IDL Connectivity Bridges JIDLCanvas

326

JIDLCanvas

Appendix A: IDL Java Object API

Member Summary

voi d

mouseRel eased(j ava. awt . event . MouseEvent e)
Internal use.

voi d

pai nt (j ava. am . Graphi cs @)
Internal use.

voi d

renovel DLConponent Li st ener

(JI DLConponent Li stener |istener)

Remove the specified JIDL ComponentListener from alist
of listeners that receive notification of Component events.

voi d

renovel DLKeyLi st ener (JI DLKeyLi stener |istener)
Removes the specified JIDLKeyListener from alist of
listeners that receive notification of Key events.

voi d

renovel DLMouselLi st ener (JI DLMouseli st ener

| i stener)

Removes the specified IDLMouseListener from alist of
listeners that receive notification of Mouse events.

voi d

renovel DLMbuseMbt i onLi st ener

(JI DLMouseMbt i onLi stener |i stener)

Removes the specified IDLMouseMotionListener from a
list of listeners that receive notification of MouseMotion
events.

voi d

renmovel DLNot i fyLi stener (JI DLNot i fyLi st ener
|'istener)

Removes the specified IDL notify listener so it no longer
receives IDL notifications.

voi d

renovel DLQut put Li st ener (JI DLCQut put Li st ener
|'istener)
Removes the specified IDL output listener on this object.

voi d

set Cursor(java.lang. String idl Cursor)
Set the JIDL Canvas cursor.

voi d

set | DLVari abl e(j ava. |l ang. String sVar,
java. |l ang. Obj ect obj)
Set/Create an IDL variable of the given name and value.

voi d

set ProcessNane(j ava. |l ang. Stri ng process)
Set the process name that the object will be created in.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 327

Member Summary

voi d set Property(java.lang. String sProperty,
java.l ang. Obj ect obj, int iPalFlag)

Call IDL setProperty method to set named property.

java.lang. String | toString()
Returns a string representation of the object.

voi d updat e(j ava. awt . Graphi cs Q)
Internal use.

Inherited Member Summary

Fieldsinherited from class Conponent

BOTTOM _ALI GNMVENT, CENTER_ALI GNVENT, LEFT_ALI GNVENT,
RI GHT_ALI GNVENT, TOP_ALI GNVENT

Fieldsinherited from interface | mageCbser ver

ABORT, ALLBITS, ERROR FRAMEBITS, HEI GHT, PROPERTI ES,
SOMEBI TS, W DTH

Methodsinherited from class Canvas

addNoti fy(), createBufferStrategy(int,

Buf ferCapabilities), createBufferStrategy(int,
Buf fer Capabilities), getAccessibleContext(),
get Buf fer Strat egy()

Methods inherited from class Conponent

IDL Connectivity Bridges JIDLCanvas

328 Appendix A: IDL Java Object API

Inherited Member Summary

action(Event, Object), add(PopupMenu),

addConponent Li st ener (Component Li st ener),

addFocusLi st ener (FocusLi st ener),

addHi er ar chyBoundsLi st ener (Hi er ar chyBoundsLi st ener),

addHi er ar chyLi st ener (Hi erar chyLi st ener),

addl nput Met hodLi st ener (| nput Met hodLi st ener),

addKeyLi st ener (KeyLi st ener),

addMouseli st ener (Mouseli st ener),

addMouseMot i onLi st ener (MouseMdt i onLi st ener),

addMouseWheel Li st ener (MouseWheel Li st ener),

addPr opert yChangelLi st ener (Stri ng,

Pr opert yChangeli st ener), addPropertyChangeli stener (Stri ng,
Propert yChangeli st ener),

appl yConponent Ori ent ati on(Conponent Ori entati on),
areFocusTraver sal KeysSet (i nt), bounds(), checkl mage(| mage,
| mmgeCbserver), checkl nage(l mage, | nageCbserver),

cont ai ns(Poi nt), contains(Point),

creat el mage(| mageProducer), createl mage(l mageProducer),
createVol atil el mage(int, int, |ImageCapabilities),
createVol atil el mage(int, int, |mageCapabilities),

del i ver Event (Event), disable(), dispatchEvent(AWTEvent),
doLayout (), enabl e(bool ean), enabl e(bool ean),

enabl el nput Met hods(bool ean), get Ali gnment X(),

get Al i gnment Y(), getBackground(), getBounds(Rectangle),
get Bounds(Rect angl e), get Col or Mbdel (),

get Conponent At (Poi nt), get Conponent At (Poi nt),

get Conponent Li st eners(), get ComponentOrientation(),

get Cursor (), getDropTarget (), get FocusCycl eRoot Ancest or (),
get FocusLi steners(), getFocusTraversal Keys(int),

get FocusTr aver sal KeysEnabl ed(), get Font (),

get Font Metri cs(Font), getForeground(), get G aphics(),

get Graphi csConfi guration(), getHeight(),

get Hi er ar chyBoundsLi steners(), getHi erarchylListeners(),
get | gnoreRepai nt (), getl nput Context(),

get | nput Met hodLi st eners(), getl nput Met hodRequest s(),

get KeyLi steners(), getlListeners(C ass), getlocal e(),

get Locati on(Point), getLocati on(Point),

get Locati onOnScr een(), get Maxi munsi ze(), get M ni nunSi ze(),
get MouselLi steners(), get MouseMoti onLi steners(),

get MouseWieel Li steners(), getNane(), getParent(),

get Peer (), getPreferredSi ze(),

get Propert yChangelLi st eners(String),

get Propert yChangeli steners(String), getSize(D nension),
get Si ze(Di nensi on), getTool kit(), getTreeLock(),
getWdth(), getX(), getY(), gotFocus(Event, bject),

handl eEvent (Event), hasFocus(), hide(), inmageUpdate(l nage,

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 329

Inherited Member Summary

int, int, int, int, int), inside(int, int), invalidate(),
i sBackgroundSet (), isCursorSet(), isD splayable(),

i sDoubl eBuf fered(), isEnabled(),

i sFocusCycl eRoot (Cont ai ner), isFocusOmner (),

i sFocusabl e(), isFontSet(), isForegroundSet(),

i sLightweight(), isOpaque(), isShow ng(), isValid(),
isVisible(), keyDowmn(Event, int), keyUp(Event, int),
layout (), list(PrintWiter, int), list(PrintWiter, int),
list(PrintWiter, int), list(PrintWiter, int),
list(PrintWiter, int), locate(int, int), location(),

| ost Focus(Event, Object), m nimuntSi ze(), nmouseDown(Event,
int, int), nmouseDrag(Event, int, int), nouseEnter(Event,
int, int), nmousekxit(Event, int, int), nouseMowve(Event,
int, int), mouseUp(Event, int, int), nove(int, int),

next Focus(), paintAll (G aphics), postEvent(Event),
preferredSi ze(), preparel mage(l mage, | mageCbserver),
prepar el mage(|l mage, | mageCbserver), print (G aphics),
printAll (G aphics), renmove(MenuComnponent),
removeConponent Li st ener (Conponent Li st ener),

removeFocusLi st ener (FocusLi st ener),

renoveH er ar chyBoundsLi st ener (Hi er ar chyBoundsLi st ener),
renoveH erar chylLi st ener (Hi erarchylLi stener),

renovel nput Met hodLi st ener (| nput Met hodLi st ener),
renoveKeylLi st ener (KeyLi st ener),

removeMouseli st ener (Mouseli st ener),

renmoveMouseMot i onLi st ener (MouseMoti onLi st ener),
renoveMouseWeel Li st ener (MobuseWheel Li st ener),
renoveNotify(), removePropertyChangeli stener(String,

Pr opert yChangeli st ener),

r enovePr opert yChangeli st ener (Stri ng,

Propert yChangeLi stener), repaint(long, int, int, int,
int), repaint(long, int, int, int, int), repaint(long,
int, int, int, int), repaint(long, int, int, int, int),
request Focus(), requestFocusl nW ndow(), reshape(int, int,
int, int), resize(D nension), resize(Di mension),

set Backgr ound(Col or), setBounds(Rectangle),

set Bounds(Rect angl e),

set Conponent Ori ent ati on(Conponent Ori entati on),

set Cursor(Cursor), setDropTarget (DropTarget),

set Enabl ed(bool ean), set FocusTraversal Keys(int, Set),

set FocusTraver sal KeysEnabl ed(bool ean),

set Focusabl e(bool ean), set Font (Font),

set For eground(Col or), setlgnoreRepai nt(bool ean),

set Local e(Local e), setlLocation(Point), setLocation(Point),
set Nane(String), setSize(Di nension), setSize(Di nension),
set Vi si bl e(bool ean), show(bool ean), show bool ean), size(),

IDL Connectivity Bridges JIDLCanvas

330 Appendix A: IDL Java Object API

Inherited Member Summary

transferFocus(), transferFocusBackward(),
transfer FocusUpCycl e(), validate()

Methods inherited from class Obj ect

equal s(Obj ect), getd ass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Fields
IDL_SOFTWARE_RENDERER

public static final int |DL_SOFTWARE_RENDERER
Internal use
OPENGL_RENDERER

public static final int OPENGL_RENDERER

Internal use
Constructors

JIDLCanvas(String, int, String)

public JI DLCanvas(j ava.l ang. String sd ass, int i OPSFl ags,
java.l ang. String sProcessNane)

Deprecated.

Replaced by constructor taking 2 parameters

Construct a JIDL Canvas

Parameters:

sd ass - IDL Classname

i OPSFI ags - Unused. The process name determines the OPS flags.

sProcessNane - The process name. If null or “”, in-process is used.

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 331

JIDLCanvas(String, String)

public JI DLCanvas(j ava.l ang. String sd ass,
java.l ang. String sProcessNane)

Construct a JIDL Canvas Note that constructing the JIDL Object does NOT create the
object on the IDL-side of the bridge. Thisis done using the createObject method.

Parameters:

sd ass - IDL Class name

sProcessNane - The process name. If null or “”, in-processis used.

Methods

abort()

public void abort ()

Requests that the IDL process containing the underlying IDL object abort its current
activity.

Thisisonly arequest and IDL may take along time before it actually stops.

The client can only Abort the current IDL activity if that wrapper object isthe current
“owner” of the underlying IDL.

Specified By:

abort in interface JIDL Objectl

Throws:

JIDLException - If IDL encounters an error.
See Also:

JDLAbortedException

addIDLComponentListener(JIDLComponentListener)

public void
addl DLConponent Li st ener (com i dl . javai dl . JI DLConponent Li st ener
| i stener)

Adds the specified J DL ComponentListener to alist of listeners that receive
notification of Component events.

IDL Connectivity Bridges JIDLCanvas

332

JIDLCanvas

Appendix A: IDL Java Object API
Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.
Parameters:
| i stener -thelistener
See Also:

JIDLComponentListener

addIDLKeyListener(JIDLKeyListener)

public void addl DLKeyLi stener(comidl .javaidl.Jl DLKeyLi st ener
|istener)

Adds the specified JIDLKeyListener to alist of listeners that receive notification of
Key events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

|'i stener -thelistener
See Also:
JIDLKeyListener

addIDLMouseListener(JIDLMouseListener)

public void addl DLMouseli stener(com i dl.javaidl.Jl DLMouseLi st ener
|istener)

Addsthe specified IDLMouseL istener to alist of listenersthat receive notification of
Mouse events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

|'i stener -thelistener
See Also:
JDLMouseListener

IDL Connectivity Bridges

Appendix A: IDL Java Object API 333

addIDLMouseMotionListener(JIDLMouseMotionListener)

public void
addl DLMbuseMot i onLi st ener (com i dl . javai dl . JI DLMbuseMot i onLi st ener
|istener)

Adds the specified IDLMouseMotionListener to alist of listenersthat receive
notification of MouseMotion events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:
| i st ener -thelistener
See Also:

JDLMouseMotionListener
addIDLNotifyListener(JIDLNotifyListener)

public void
addl DLNot i fyLi stener(comidl.javaidl.JIDLNotifyListener |istener)

Adds the specified IDL notify listener to receive IDL notification events on this
object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:
addIDLNotifyListener in interface JI DL Objectl
Parameters:

|'i st ener -thelistener
addIDLOutputListener(JIDLOutputListener)

public void
addl DLQut put Li stener (com i dl .javaidl.JI DLCut put Li stener |istener)

Adds the specified IDL output listener to receive IDL output events on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

IDL Connectivity Bridges JIDLCanvas

334

Appendix A: IDL Java Object API

Specified By:
addIDL OutputListener in interface JIDLObjectl
Parameters:

| i stener -thelistener

callFunction(String, int)

public java.l ang. Obj ect call Function(java.lang. String
sMet hodNane, int i Pal Fl ag)

Cadll IDL function that accepts zero parameters.
Parameters:
sMet hodNanme - the function name

i Pal Fl ag - aflag determining whether areturned array if convolved or not. If the
returned value is not an array, thisvalue is zero. See class description for more
information.

Returns:

an Object of type JDLNumber, JIDLString, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.
See Also:

callFunction(String, int, Object[], int[], int)

callFunction(String, int, Object[], int[], int)

JIDLCanvas

public java.l ang. Obj ect call Function(java.lang. String
sMet hodNare, int argc, java.lang. Qoject[] argv, int[] argpal,
i nt iPal Fl ag)

Call IDL function.

The argpal parameter is an array of flags created by OR-ing constants from class
JDLConst. Each array element corresponds to the equivalent parameter in argv.

Specified By:

callFunction in interface JIDL Objectl

IDL Connectivity Bridges

Appendix A: IDL Java Object API 335

Parameters:
sMet hodNane - the procedure name
ar gc - the number of parameters

ar gv - array of Objectsto be passed to IDL. Thisarray should be of length ar gc and
should contain objects of type JIDLNumber, JIDLObject, JIDL String or JIDL Object.

ar gpal - array of flags denoting whether each argv parameter passed to be bridgeis
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length ar gc.

i Pal Fl ag - aflag determining whether areturned array if convolved or not. If the
returned value is not an array, thisvalue is zero.

Returns:

an Object of type JIDLNumber, JIDL String, JIDLObjectl or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type.

Throws:
JIDLException - If IDL encounters an error.
See Also:

JDLNumber, JIDLObject, JIDL String, JIDLATrray,

JDLConst. PARMFLAG_CONST, JDLConst. PARMFLAG_IN_OUT,
JDLConst. PARMFLAG_CONVMAJIORITY,

JDLConst.PARMFLAG _NO CONVMAJORITY

callProcedure(String)

public void callProcedure(java.l ang. Stri ng sMet hodNane)
Call IDL procedure that accepts zero parameters.
Parameters:
sMet hodNane - the procedure name
Throws:
JIDLException - If IDL encounters an error.
See Also:
callProcedure(String, int, Object[], int[])

IDL Connectivity Bridges JIDLCanvas

336

Appendix A: IDL Java Object API

callProcedure(String, int, Object[], int[])

public void call Procedure(java.lang. String sMet hodNane,
int argc, java.lang. Qbject[] argv, int[] argpal)

Call IDL procedure.

The argpal parameter is an array of flags created by OR-ing constants from class
JDLConst. Each array element corresponds to the equivalent parameter in argv.

Specified By:

callProcedure in interface J DL Objectl
Parameters:

sMet hodNane - the procedure name
ar gc - the number of parameters

ar gv - array of Objectsto be passed to IDL. Thisarray should be of length ar gc and
should contain objects of type JDLNumber, JIDLObject, JIDLString or JIDL Object.

ar gpal - array of flags denoting whether each argv parameter passed to be bridgeis
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length ar gc.

Throws:
JIDLException - If IDL encounters an error.
See Also:

JIDLNumber, JIDL Object, JIDL String, JIDLATrray,

JDLConst. PARMFLAG_CONST, JDLConst. PARMFLAG_IN_OUT,
JDLConst. PARMFLAG_CONVMAJORITY,

JDLConst. PARMFLAG_NO_CONVMAJIORITY

componentHidden(ComponentEvent)

JIDLCanvas

public void conponent Hi dden(j ava. awt . event . Conponent Event e)
Called when the component is hidden.

This method does nothing because IDL does not care about this event. This could be
overridden by a child of JIDLCanvasiif these events were of interest to the client
application

Specified By:

conponent Hi dden ininterface Conponent Li st ener

IDL Connectivity Bridges

Appendix A: IDL Java Object API 337

See Also:

j ava. awmt . event . Conrponent Li st ener
componentMoved(ComponentEvent)
public void conponent Moved(j ava. awt . event . Conponent Event e)

Called when the component is moved.

This method does nothing because IDL does not care about this event. This could be
overridden by achild of JIDLCanvasif these events were of interest to the client
application

Specified By:
conponent Moved ininterface Conponent Li st ener
See Also:

j ava. awm . event . Conrponent Li st ener

componentResized(ComponentEvent)

public final void
conponent Resi zed(j ava. awt . event . Conponent Event e)

Internal use.
Called when the JIDLCanvasis resized.

If interested in resize events, use | DLcomponentResized. This method should NOT
be overridden by a child of JIDL Canvas.

Specified By:

conponent Resi zed ininterface Conponent Li st ener

See Also:

JIDLComponentListener, I DL.componentResi zed(JIDL Objectl, ComponentEvent)

componentShown(ComponentEvent)

public void conponent Shown(j ava. awt . event . Conponent Event e)
Called when the component is shown.

This method does nothing because IDL does not care about this event. This could be
overridden by achild of JIDLCanvasiif these events were of interest to the client
application

IDL Connectivity Bridges JIDLCanvas

338

Appendix A: IDL Java Object API

Specified By:
conponent Shown in interface Conponent Li st ener
See Also:

j ava. awm . event . Conponent Li st ener

createObject()

public void createObject()
Create the wrapped object by calling IDL’s ::INIT method.
Used for ::INIT methods that take zero parameters.
Throws:
JIDLException - If IDL encounters an error.
See Also:

createObject(int, Object[], int[])

createObject(int, Object[], int[])

JIDLCanvas

public void createject(int argc, java.lang. Object[] argv,
int[] argpal)

Create the wrapped object by calling IDL's ::INIT method.

Note that the GUI that this Canvas lives in must be exposed before the createObject
method is called.

createObject does the following:
e calIDL :INIT
» attach the IDL Window to this Canvas
e cal initListenersto hook up default event handling
e repaint the canvas

The argpal parameter is an array of flags created by OR-ing constants from class
JDLConst. Each array element corresponds to the equivalent parameter in argv. See
the class description for more information.

Specified By:
createObject in interface JIDL Objectl

IDL Connectivity Bridges

Appendix A: IDL Java Object API 339

Parameters:
ar gc - the number of parameters

ar gv - array of Objectsto be passed to IDL. Thisarray should be of length ar gc and
should contain objects of type JIDLNumber, JIDLObject, JIDL String or JIDL Object.

ar gpal - array of flags denoting whether each argv parameter passed to be bridgeis
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length ar gc.

Throws:

JDLException - If IDL encounters an error.
See Also:

JIDLCongt, initListeners()

destroyObject()

public void destroyQbject()
Destroys the underlying IDL object associated with the wrapper.

If the object being destroyed is the last object within an OPS process, the OPS
processis also destroyed.

Note that this does not destroy the actual wrapper object. Because the wrapper object
isaJavaobject, it follows all the Java reference counting/garbage collection schemes.
Once all references to the wrapper object are released from Java code and once the
Java Virtual Machine calls the garbage collector, the wrapper object may be deleted
from memory.

Specified By:

destroyObject in interface JIDL Objectl
draw()

public void draw()

Internal use.

Cdll IDL to inform the Canvas has been exposed to cause a redraw.

Thisin turn calls all the JIDL ComponentListeners. Should not be overridden.
executeString(String)

public void executeString(java.lang. String sCnd)

IDL Connectivity Bridges JIDLCanvas

340 Appendix A: IDL Java Object API

Execute the given command string in IDL.

Specified By:

executeString in interface JIDL Objectl

Parameters:

sCmd - the single-line command to execute in IDL.

Throws:

JDLException - If IDL encounters an error.
getClassName()

public java.lang. String getd assNane()

Deprecated.

Replaced by getl DL ObjectClassName()

Get the class name of the object.

Returns:

classname (“” if object not created yet)

getCookie()

public | ong get Cooki e()
Internal use.
Specified By:
getCookie in interface J DL Objectl
getIDLODbjectClassName()
public java.lang. String getlDLObj ect d assName()
Retrieves the IDL object class name of the underlying IDL object.
Specified By:
getIDLObjectClassName in interface JIDL Objectl
Returns:

the IDL object class name

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 341

getIDLODbjectVariableName()

public java.lang. String get!DLObj ect Vari abl eName()

When the underlying IDL object was created in the IDL process, it was assigned a
variable name. This method retrieves that name.

Specified By:
getIDLObjectVariableName in interface J DL Objectl
Returns:
the variable name
getIDLVariable(String)
public java.l ang. Cbj ect getlDLVariable(java.lang. String sVar)

Given avariable name, return the IDL variable.

Note that in the case of arrays, the array will ALWAY S be convolved when passed
between Javaand IDL.

Specified By:

getIDLVariable in interface JIDL Objectl
Parameters:

sVar - TheIDL variable name
Returns:

an Object of type JDLNumber, JIDLString, IDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:
JIDLException - If IDL encounters an error.
getObjVariableName()
public java.lang. String get Qbj Vari abl eName()
Deprecated.

Replaced by getl DL ObjectVariableName()
Get the IDL Variable name of the given object

IDL Connectivity Bridges JIDLCanvas

342 Appendix A: IDL Java Object API

Returns:

a String representing the IDL Variable name

getProcessName()

public java.l ang. String getProcessNanme()

Returns the name of the process that contains the underlying IDL object. For an in-
process object, returns an empty string.

Specified By:
getProcessName in interface JIDL Objectl
Returns:

process hame. Empty string if the processis in-process.
getProperty(String, int)

public java.l ang. Cbj ect getProperty(java.lang. String
sProperty, int iPalFlag)

Call IDL getProperty method to get named property.
Specified By:

getProperty in interface JIDL Objectl

Parameters:

sProperty - the property name

i Pal Fl ag - aflag determining whether areturned array will be convolved or not. If
the returned value is not isignored.

Returns:

an Object of type JIDLNumber, JIDL String, JIDLObject or JIDLATrray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 343

See Also:

JIDLNumber, JIDLObjectl, JDLString, JIDLArray,
JDLConst. PARMFLAG _CONVMAJIORITY,
JIDLConst. PARMFLAG_NO_CONVMAJORITY

IDLcomponentExposed(JIDLObjectl)

public void | DLconponent Exposed(com i dl.javaidl.Jl DLObj ectl obj)
Called when the JIDL Canvas is exposed.

The default behavior of this method isto lock the Canvas, passthe event onto IDL to
handle (i.e. redraw), and then unlock the Canvas.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to do something special before or after the redraw happens.
The method would be implemented as follows:

public class nySubC ass extends Jl DLCanvas ({
public void | DLconponent Exposed() {
/1 do sonething here before IDL is called
super . | DLconponent Exposed() ;
/1 do sonething if desired afterwards

}
}
Specified By:
IDLcomponentExposed in interface JIDL ComponentListener
See Also:

J DL ComponentListener, initListeners()
IDLcomponentResized(JIDLObjectl, ComponentEvent)

public void | DLconponent Resi zed(com i dl.javaidl.JI DLObjectl obj,
j ava. awm . event . Conponent Event e)

Called when the JIDLCanvasiis resized.
The default behavior of this method isto send the resize event to IDL to handle.
Specified By:

IDLcomponentResized in interface J DL ComponentListener

IDL Connectivity Bridges JIDLCanvas

344 Appendix A: IDL Java Object API

See Also:

JIDLComponentListener, initListeners()
IDLkeyPressed(JIDLODbjectl, KeyEvent, int, int)

public void | DLkeyPressed(comidl.javaidl.Jl DLCbjectl obj,
java. awm . event . KeyEvent e, int x, int y)

Called when the the J DL Canvas has focus and a key is pressed.

The default behavior of this method is pass the event to IDL which, if registered for
the event will call ::OnKeyboard.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of
the method. Or the sub-class may do something special before or after the event

happens.

See IDLcomponentExposed for an example of how this would be done.
Specified By:

IDLkeyPressed in interface JIDLKeyListener

See Also:

JDLKeyListener, IDLcomponentExposed(JIDL Objectl), initListeners()

IDLkeyReleased(JIDLObjectl, KeyEvent, int, int)

public void | DLkeyRel eased(comidl.javaidl.JlI DLObjectl obj,
j ava. awm . event . KeyEvent e, int x, int y)

Called when the the JIDL Canvas has focus and akey is released.

The default behavior of this method is pass the event to IDL which, if registered for
the event will call ::OnKeyboard. The behavior may be changed by overriding this
method in a sub-class. For example, the sub-class may want to ignore the event by
providing an empty implementation of the method. Or the sub-class may do
something special before or after the event happens. See |DLcomponentExposed for
an example of how thiswould be done.

Specified By:

IDLkeyReleased in interface JIDLKeyListener

See Also:

JIDLKeyListener, IDLcomponentExposed(JIDLObjectl), initListeners()

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 345

IDLmouseDragged(JIDLObjectl, MouseEvent)

public void | DLmouseDr agged(com i dl.javaidl.JlI DLObj ect| obj,
java. awm . event . MouseEvent e)

Called when the mouse is dragged in a JIDL Canvas.

The default behavior of this method is pass the event to IDL which, if registered for
the event, will call ::OnMouseM otion.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of
the method. Often our IDL IDLitWindow is only interested in one type of motion
event and not another. Or the sub-class may do something specia before or after the
event happens.

See | DL componentExposed for an example of how this would be done.
Specified By:

IDLmouseDragged in interface JIDL MouseM otionListener

See Also:

JIDLMouseMationListener, IDLcomponentExposed(JIDL Objectl), initListeners()
IDLmouseEntered(JIDLObjectl, MouseEvent)

public void | DLmouseEnt ered(com i dl.javaidl.JlI DLObj ectl obj,
java. awm . event . MouseEvent e)

Called when the mouse enters a JIDL Canvas.

The default behavior of this method is to ignore the event.

The behavior may be changed by overriding this method in a sub-class.
Specified By:

IDLmouseEntered in interface JIDL M ouseL istener

See Also:

JIDLMouseListener, initListeners()
IDLmouseExited(JIDLObjectl, MouseEvent)

public void | DLmouseExited(comidl.javaidl.Jl DLObjectl obj,
j ava. awt . event . MouseEvent e)

Called when the mouse exits a JIDL Canvas.

IDL Connectivity Bridges JIDLCanvas

346

JIDLCanvas

Appendix A: IDL Java Object API

The default behavior of this method is to ignore the event.

The behavior may be changed by overriding this method in a sub-class.
Specified By:

IDLmouseExited in interface JJIDLMouseL istener

See Also:

JIDLMouseListener, initListeners()

IDLmouseMoved(JIDLObjectl, MouseEvent)

public void | DLmouseMoved(comidl.javaidl.Jl DLCbjectl obj,
java. awm . event . MouseEvent e)

Called when the mouse is moved in aJIDL Canvas.

The default behavior of this method is pass the event to IDL which, if registered for
the event, will call ::OnMouseMotion.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of
the method. Often our IDL IDLitWindow is only interested in one type of motion
event and not another. Or the sub-class may do something specia before or after the
event happens.

See | DL componentExposed for an example of how this would be done.
Specified By:

IDLmouseMoved in interface JJDLMouseMotionListener

See Also:

JIDLMouseMationListener, IDLcomponentExposed(JIDL Objectl), initListeners()

IDLmousePressed(JIDLObjectl, MouseEvent)

public void | DLmousePressed(comidl.javaidl.Jl DLObjectl
obj, java.awt.event. MuseEvent e)

Called when the mouse is pressed in a JIDL Canvas.

The default behavior of this method is pass the event to IDL which, if registered for
the event, will call ::OnMouseDown.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of

IDL Connectivity Bridges

Appendix A: IDL Java Object API 347

the method. Or the sub-class may do something special before or after the event
happens.

See | DLcomponentExposed for an example of how this would be done.

Specified By:

IDLmousePressed in interface JIDL Mousel istener

See Also:

JDLMouseListener, IDLcomponentExposed(JIDL Objectl), initListeners()
IDLmouseReleased(JIDLObjectl, MouseEvent)

public void | DLmouseRel eased(comidl.javaidl.JlI DLObject! obj,
j ava. awm . event . MouseEvent e)

Called when the mouse isreleased in a JIDL Canvas.

The default behavior of this method is pass the event to IDL which, if registered for
the event, will call ::OnMouseUp.

The behavior may be changed by overriding this method in a sub-class. For example,
the sub-class may want to ignore the event by providing an empty implementation of
the method. Or the sub-class may do something special before or after the event
happens.

See | DL componentExposed for an example of how this would be done.

Specified By:

IDLmouseReleased in interface JIDL Mousel istener

See Also:

JIDLMouseListener, IDLcomponentExposed(JIDL Objectl), initListeners()
initListeners()

public void initListeners()
Initialize listeners.

This method is always called by createObject. The JIDL Canvas listensto the
following events:

e JDLComponentListener
e JIDLKeyListener
e JDLMouselistener

IDL Connectivity Bridges JIDLCanvas

348 Appendix A: IDL Java Object API

+ JDLMouseMotionListener

The method may be overridden by sub-classes to initialize a different set of listeners
(or noneat all). For exampleif a sub-class of JIDL Canvas only wished to listen to key
and component events, it would override initListeners as follows:

public void initListeners() {
addl DLConponent Li stener (this);
addl DLKeyLi st ener (thi s);

As another example, if a sub-class of JDL Canvas wished to listen to key events,
component events, and notify events, it would need to implement JIDLNotifyListener
and register to listen for these eventsin initListeners, asfollows:

public class newCanvas extends JlDLCanvas inplenments JI DLNoti fyLi
st ener

{

public void initListeners() {
addl DLConponent Li st ener (t hi s);
addl DLKeyLi st ener (this);
addl DLNot i fyLi stener (this);

}
void Onl DLNotify(JIDLChjectl obj, String sl1, String s2) {

/1 do something with the notify
}

Specified By:
initListenersin interface JIDL Objectl
See Also:

JIDLComponentListener, JIDLKeyListener, JIDLMousel istener,
JIDLMouseMationListener, JDLNotifyListener, JIDLOutputListener

iIsFocusTraversable()

publ i ¢ bool ean i sFocusTraversabl e()
Internal use.
Overrides:

i sFocusTr aver sabl e in class Conponent

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 349

iIsObjCreated()
publi ¢ bool ean i sObj Created()
Deprecated.
Replaced by isObjectCreated()
Determineif object has been created successfully.
Returns:

t rue if object created successfully, or f al seif object not created or creation was
unsuccessful.

iIsObjectCreated|()
publ i c bool ean i sCbj ect Creat ed()
Determine if object has been created successfully.
Specified By:
isObjectCreated in interface JIDL Objectl
Returns:

t rue if object created successfully, or f al se if object not created or creation was
unsuccessful.

See Also:
createObject()
isObjectDisplayable()
publ i ¢ bool ean i sCbj ect Di spl ayabl e()
Specified By:
isObjectDisplayable in interface JIDL Objectl
keyPressed(KeyEvent)

public final void keyPressed(java. awt.event. KeyEvent e)
Internal use.
Called when akey is pressed when the J DL Canvas has focus.

If interested in this event, use IDLkeyPressed. This method should NOT be
overridden by achild of JIDL Canvas.

IDL Connectivity Bridges JIDLCanvas

350

JIDLCanvas

Appendix A: IDL Java Object API

Specified By:

keyPr essed ininterface KeyLi st ener

See Also:

JDLKeyListener, IDLkeyPressed(JIDLObjectl, KeyEvent, int, int)

keyReleased(KeyEvent)

public final void keyRel eased(j ava. awt. event. KeyEvent e)
Internal use.
Called when akey is released when the JIDL Canvas has focus.

If interested in this event, use IDLkeyReleased. This method should NOT be
overridden by achild of JIDL Canvas.

Specified By:

keyRel eased ininterface KeyLi st ener

See Also:

JIDLKeyListener, IDLkeyReleased(JIDLObjectl, KeyEvent, int, int)

keyTyped(KeyEvent)

public void keyTyped(j ava. am . event. KeyEvent e)
Internal use.
Called when akey is typed.

This method does nothing because IDL does not care about this event, using
keyPressed to trigger its mouse events. This method should NOT be overridden by a
child of JIDLCarwas.

Specified By:

keyTyped ininterface KeyLi st ener

mapIDLCursorToJavaCursor(String)

public int mapl DLCursor ToJavaCursor(j ava. |l ang. String idl Cursor)

Mapsthe IDL cursor to a suitable Java cursor. Thisis called internally by setCursor
when the IDL drawable changes the cursor.

May be overridden to change the mapping. The default mapping is as follows:

IDL Connectivity Bridges

Appendix A: IDL Java Object API 351

* “ARROW” — Cursor.DEFAULT_CURSOR;
* “UP_ARROW” — Cursor.DEFAULT_CURSOR,;
* “IBEAM” — Cursor.TEXT_CURSOR,
* “ICON” — Cursor.TEXT_CURSOR;
¢ “CROSSHAIR" — Cursor.CROSSHAIR_CURSOR,;
e “ORIGINAL” — Cursor.CROSSHAIR_CURSOR;
* “HOURGLASS’ — Cursor.WAIT_CURSOR;
e “MOVE’ — Cursor.MOVE_CURSOR,;
 “SIZE_NW” — Cursor.NW_RESIZE_CURSOR;
* “SIZE SE” — Cursor.SE_RESIZE_CURSOR;
e “SIZE_NE” — Cursor.NE_RESIZE_CURSOR;
 “SIZE_SW” — Cursor.SW_RESIZE_CURSOR,;
 “SIZE_ EW” — Cursor.E_RESIZE_CURSOR;
* “SIZE_NS’ — Cursor.N_RESIZE_CURSOR;
e otherwise — Cursor.DEFAULT _CURSOR;
Specified By:
mapl DLCur sor ToJavaCur sor ininterface J1 DLCur sor Suppor t
Parameters:
i dl Cursor - aString representing the IDL cursor
Returns:
the Cursor constant representing the Java Cursor style
See Also:

setCursor(String)
mouseClicked(MouseEvent)

public void nmouseCd icked(j ava. awt . event. MouseEvent e)
Internal use.
Called when the mouseis clicked.

IDL Connectivity Bridges JIDLCanvas

352

JIDLCanvas

Appendix A: IDL Java Object API

This method does nothing because IDL does not care about this event, using
mousePressed to trigger its mouse events. This method should NOT be overridden by
achild of JIDLCanvas.

Specified By:

nmoused i cked ininterface MouseLi st ener

mouseDragged(MouseEvent)

public final void nouseDragged(java.aw . event. MuseEvent e)
Internal use.
Called when the mouse is dragged in the JIDL Canvas.

If interested in this event, use IDLmouseDragged. This method should NOT be
overridden by achild of JIDL Canvas.

Specified By:

nmouseDr agged in interface MouseMdt i onLi st ener

See Also:

JIDLMouseMationListener, IDLmouseDragged(JIDL Objectl, MouseEvent)

mouseEntered(MouseEvent)

public final void nouseEntered(java. awm . event. MouseEvent e)
Internal use.
Called when the mouse enters the J DL Canvas.

If interested in this event, use IDLmouseEntered. This method should NOT be
overridden by achild of JIDL Canvas.

Specified By:

nmouseEnt er ed in interface MouselLi st ener

See Also:

JIDLMouseListener, IDLmouseEntered(JIDL Objectl, MouseEvent)

mouseExited(MouseEvent)

public final void nouseExited(java. awt.event. MouseEvent e)

Internal use.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 353

Called when the mouse exits the JIDL Canvas.

If interested in this event, use IDLmouseExited. This method should NOT be
overridden by achild of JIDLCanvas.

Specified By:

nmouseExi t ed ininterface MouselLi st ener

See Also:

JDLMouseListener, IDLmouseExited(JIDL Objectl, MouseEvent)

mouseMoved(MouseEvent)

public final void nouseMoved(java. awt.event. MouseEvent e)
Internal use.
Called when the mouse moves in the JIDL Canvas.

If interested in this event, use IDLmouseMoved. This method should NOT be
overridden by achild of JIDL Canvas.

Specified By:
nmouseMoved in interface MouseMot i onLi st ener
See Also:

JDLMouseMotionListener, IDLmouseM oved(JIDL Objectl, MouseEvent)

mousePressed(MouseEvent)
public final void nousePressed(java.aw . event. MouseEvent e)
Internal use.
Called when the mouse is pressed.

If interested in this event, use IDLmousePressed. This method should NOT be
overridden by achild of JIDL Canvas.

Specified By:

nousePr essed ininterface Mouseli st ener

See Also:

JDLMouseListener, IDLmousePressed(JIDL Objectl, MouseEvent)

IDL Connectivity Bridges JIDLCanvas

354 Appendix A: IDL Java Object API

mouseReleased(MouseEvent)
public final void nouseRel eased(j ava. awt . event. MouseEvent e)
Internal use.
Called when the mouse is released.

If interested in this event, use IDL mouseReleased. This method should NOT be
overridden by achild of JIDLCanvas.

Specified By:

nmouseRel eased ininterface Mouseli st ener

See Also:

JDLMouseListener, IDLmouseRel eased(JIDL Objectl, MouseEvent)
paint(Graphics)

public void paint(java.awt. G aphics g)
Internal use. Paint the Canvas. (Do not override this method)
Overrides:

pai nt inclass Canvas
removelDLComponentListener(JIDLComponentListener)

public void
r enovel DLConponent Li st ener (com i dl . javai dl . JI DLConponent Li st ener
|istener)

Remove the specified JIDL ComponentListener from alist of listeners that receive
notification of Component events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:
| i stener -thelistener
See Also:

JIDLComponentListener

JIDLCanvas IDL Connectivity Bridges

Appendix A: IDL Java Object API 355

removelDLKeyListener(JIDLKeyListener)

public void renovel DLKeyLi stener(comidl.javaidl.Jl DLKeyLi st ener
|istener)

Removes the specified JIDLKeyListener from alist of listeners that receive
notification of Key events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:
| i st ener -thelistener
See Also:

JIDLKeyListener
removelDLMouseListener(JIDLMouseListener)

public void
renovel DLMouseLi stener (comidl.javaidl.Jl DLMbuseLi stener |istener)

Removes the specified IDLMouseL istener from alist of listeners that receive
notification of Mouse events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:
| i stener -thelistener
See Also:

JIDLMouseListener
removelDLMouseMotionListener(JIDLMouseMotionListener)

public void
renovel DLMbuseMdt i onLi st ener (com i dl.javai dl . JI DLMouseMdt i onLi st en
er |listener)

Removes the specified JIDLMouseMotionListener from alist of listenersthat receive
notification of MouseM otion events.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

IDL Connectivity Bridges JIDLCanvas

356

JIDLCanvas

Appendix A: IDL Java Object API

Parameters:
| i st ener -thelistener
See Also:

JIDLMouseMotionListener

removelDLNotifyListener(JIDLNotifyListener)

public void
renmovel DLNot i f yLi stener(comidl.javaidl.JlI DLNotifyLi stener
|'istener)

Removes the specified IDL notify listener so it no longer receives IDL notifications.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:
removel DLNotifyListener in interface JIDL Objectl
Parameters:

| i st ener -thelistener

removelDLOutputListener(JIDLOutputListener)

public void
renovel DLCQut put Li st ener (com i dl . j avai dl . JI DLQut put Li st ener
|istener)

Removes the specified IDL output listener on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:
removel DL OutputListener in interface J DL Objectl
Parameters:

| i st ener -thelistener

setCursor(String)

public void setCursor(java.l ang. String idl Cursor)

IDL Connectivity Bridges

Appendix A: IDL Java Object API 357

Set the JIDL Canvas cursor. Called automatically when the IDL cursor changes. This
in turn calls mapl DL Cursor ToJavaCursor to map the IDL cursor name to a suitable
Java cursor type.

Specified By:

set Cur sor ininterface JI DLCur sor Support
Parameters:

i dl Cursor - A String representing the IDL cursor name.
See Also:

mapl DL CursorToJavaCursor(String)
setIDLVariable(String, Object)

public void setlDLVariable(java.lang. String sVar,
java. | ang. Cbj ect obj)

Set/Create an IDL variable of the given name and value.

Note that in the case of arrays, the array will ALWAY S be convolved when passed
between Java and IDL.

Specified By:

setIDLVariable in interface J DL Objectl
Parameters:

sVar - the|DL variable name

obj - object to be passed to IDL. Should be an object of type J DL Number,
JDLObject, IDLString or JIDLATrray.

Throws:
JIDLException - If IDL encounters an error.
setProcessName(String)

public void setProcessNanme(j ava.l ang. Stri ng process)

Set the process name that the object will be created in.

The process name may only be set before createObject is called. If called after the
object has been created, this method call does nothing.

IDL Connectivity Bridges JIDLCanvas

358

JIDLCanvas

Appendix A: IDL Java Object API

Specified By:
setProcessName in interface JIDL Objectl
Parameters:

pr ocess - Process name. Empty String means create in same process (in-process).

setProperty(String, Object, int)

public void setProperty(java.lang. String sProperty,
java. |l ang. Obj ect obj, int iPal Flag)

Cadll IDL setProperty method to set named property.

The iPalFlag parameter is a set of flagsthat are or-ed together. Currently this
parameter is only used to specify whether a IDLArray being passedinto IDL is
convolved or not. For arrays argpal should be set to either

JDLConst. PARMFLAG_CONVMAJORITY or

JDLConst. PARMFLAG_NO_CONVMAUJORITY.

Specified By:

setProperty in interface JIDL Objectl
Parameters:

sProperty - the property name

obj - object to be passed to IDL. Should be an object of type JI DL Number,
JDLObject, IDLString or JIDL Object.

i Pal FI ag - flag denoting whether the passed in parameter is convolved or not.
Note: setProperty does not allow obj to be modified by IDL

Throws:
JIDLException - If IDL encounters an error.
See Also:

JIDLNumber, JIDLObject, JIDLString, JIDLATrray,
JDLConst. PARMFLAG_CONVMAJORITY,
JIDLConst. PARMFLAG_NO_CONVMAJORITY

toString()

public java.lang. String toString()
Returns a string representation of the object.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 359

Overrides:
t oSt ri ng inclass Conponent
update(Graphics)
public void update(java.awt. G aphi cs g)
Internal use. Update the Canvas. (Do not override this method)
Overrides:

updat e in class Canvas

IDL Connectivity Bridges JIDLCanvas

360 Appendix A: IDL Java Object API

JIDLChar

Declaration

public class JlIDLChar inplenments Jl DLNunber,
java.io. Serializable

j ava. |l ang. Qbj ect

I
+--comidl.javaidl.JlDLChar

All Implemented Interfaces:

JI DLNunber, java.io. Serializable

Description
The JIDL Char class wraps a char as a mutabl e object usable by the Java-IDL Export
bridge.
Member Summary
Constructors
JI DLChar (char val ue)
Construct a wrapper object.
JI DLChar (JI DLNunber val ue)
Construct awrapper object.
M ethods
bool ean bool eanVal ue()
Return the value of the wrapped primitive.
byt e byt eVal ue()
Return the value of the wrapped primitive
char char Val ue()
Return the value of the wrapped primitive
doubl e doubl eVal ue()
Return the value of the wrapped primitive
f | oat f | oat Val ue()
Return the value of the wrapped primitive

JIDLChar IDL Connectivity Bridges

Appendix A: IDL Java Object API

361

Member Summary

int i nt Val ue()

Return the value of the wrapped primitive
| ong | ongVal ue()

Return the value of the wrapped primitive
voi d set Val ue(char val ue)

Change the value of the wrapper object
voi d set Val ue(JI DLNurber val ue)

Change the value of the wrapper object
short short Val ue()

Return the value of the wrapped primitive
java.lang. String | toString()

Inherited Member Summary

Methods inherited from class Obj ect

equal s(bj ect),

i nt)

get Cl ass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,

Constructors
JIDLChar(char)

publi ¢ JI DLChar (char val ue)

Construct a wrapper object.

Parameters:

val ue - value to wrap for use in the export bridge

JIDLChar(JIDLNumber)

public JIDLChar(comidl.javaidl.Jl DLNunber val ue)

Construct a wrapper object.

IDL Connectivity Bridges

JIDLChar

362

Appendix A: IDL Java Object API

Parameters:

val ue - JIDLNumber to wrap for use in the export bridge

Methods

JIDLChar

booleanValue()

publ i ¢ bool ean bool eanVal ue()

Return the value of the wrapped primitive.
Specified By:

booleanValue in interface JIDL Number
Returns:

t r ue if non-zero, f al se otherwise

byteValue()

public byte byteVal ue()
Return the value of the wrapped primitive

Specified By:
byteValue in interface JIDL Number
Returns:

value that is wrapped by this object

charValue()

publi ¢ char charVal ue()

Return the value of the wrapped primitive
Specified By:

charValue in interface JIDL Number
Returns:

value that is wrapped by this object

doubleValue()

publ i ¢ doubl e doubl eVal ue()

IDL Connectivity Bridges

Appendix A: IDL Java Object API 363

Return the value of the wrapped primitive
Specified By:
doubleVauein interface JIDL Number
Returns:
value that is wrapped by this object
floatValue()
public float floatVal ue()
Return the value of the wrapped primitive
Specified By:
floatValue in interface JIDL Number
Returns:
value that is wrapped by this object
intValue()
public int intValue()
Return the value of the wrapped primitive
Specified By:
intValue in interface J DL Number
Returns:
value that is wrapped by this object
longValue()
public I ong | ongVal ue()
Return the value of the wrapped primitive
Specified By:
longValue in interface JIDL Number
Returns:

value that is wrapped by this object

IDL Connectivity Bridges JIDLChar

364 Appendix A: IDL Java Object API

setValue(char)

public void setVal ue(char val ue)

Change the value of the wrapper object

Parameters:

val ue - primitive value to wrap for use in the export bridge
setValue(JIDLNumber)

public void setValue(comidl.javaidl.Jl DLNunber val ue)

Change the value of the wrapper object

Specified By:

setValuein interface JIDL Number

Parameters:

val ue - JIDLNumber to wrap for use in the export bridge
shortValue()

public short short Val ue()
Return the value of the wrapped primitive

Specified By:
shortValue in interface JIDLNumber
Returns:

value that is wrapped by this object
toString()

public java.lang. String toString()
Overrides:

toStringinclassbj ect

JIDLChar IDL Connectivity Bridges

Appendix A: IDL Java Object API 365

JIDLComponentListener

Declaration
public interface Jl DLConponent Li st ener

All Known Implementing Classes:
JIDLCanvas

Description

The listener interface for receiving component events (expose, resize) on a
JIDLCanvas.

The classthat isinterested in handling these events implements this interface (and all
the methods it contains). The listener object created from that classis then registered
with the JIDL Canvas using the addI DL ComponentListener method. The listener is
unregistered with the removel DL ComponentL istener.

Component events are provided for notification purposes; the JIDL Canvas
automatically handles component redraws and resizes internally whether a program
registers an additional JIDLComponentListener or not. The JIDLCarnvasisitself a

J DL ComponentListener and provides default behavior for expose and resize. For an
expose event, the default behavior isfor the JIDL Canvas to call the IDL program’s
OnExpose method. For aresize, the default isto call the IDL program’s OnResize
method.

Note that clients should not register to listen to JIDL Canvas ComponentEvents using
a ComponentListener, preferring the JIDL ComponentListener instead.

See Also:

j ava. awm . event . Conponent Event,
j ava. awm . event . Conponent Li st ener

IDL Connectivity Bridges JIDLComponentListener

366 Appendix A: IDL Java Object API

Member Summary
Methods

voi d | DLconponent Exposed(JI DLObj ect| obj)

The IDL component (JIDL Canvas) has been exposed.
voi d | DLconponent Resi zed(JI DLObj ect| obj,

j ava. awt . event . Conponent Event event)

The IDL component (JIDL Canvas) has been resized.

Methods

IDLcomponentExposed(JIDLObjectl)
public void | DLconponent Exposed(com i dl.javaidl.Jl DLObj ect|l obj)
The IDL component (JIDL Canvas) has been exposed.

The default behavior of JIDL Canvas's default IDLcomponentExposed is to the IDL
program’s OnExpose method.

Parameters:

obj - The object that has been resized
IDLcomponentResized(JIDLObjectl, ComponentEvent)

public void | DLconponent Resi zed(com i dl.javaidl.JI DLObjectl obj,
j ava. awt . event . Conmponent Event event)

The IDL component (JIDLCanvas) has been resized.

The default behavior of JDLCanvas's default IDLcomponentResized isto call the
IDL program’s OnResize method.

Parameters:
obj - The object that has been resized

event - The Component event

JIDLComponentListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 367

JIDLConst

Declaration

public class JlDLConst
j ava. |l ang. Qbj ect

|
+--comidl.javaidl.Jl DLConst

Description

Contains constants used by the Java-IDL wrapper classes.

Member Summary

Fields

static int CONTRCOL_| NPROCC
Control flag for determining object isto be
created in-process

static int CONTROL_ QUTPROC
Control flag for determining object isto be
created out-of-process

static int | DL_ABORT_NOT_OMNER

Error code when an abort request is made, but the
calling object does not have permission to request
the abort.

static | DL_ABORT NOT_OANER MESSAGE
java.lang. String Internal use.

static int | DL_ABORTED
Error code returned when IDL processing has
aborted due to an abort request.

static int | DL_BUSY
Error code returned if IDL is called while
processing another request.

IDL Connectivity Bridges JIDLConst

368 Appendix A: IDL Java Object API

Member Summary

static int | DL_NOTHI NG_TO_ABORT
Error code when an abort request is made, but
there is nothing to abort.

static | DL_NOTHI NG_TO_ABORT MESSAGE
java.lang. String Internal use.
static int PARMFLAG_CONST

Parameter associated with this flag and passed to
IDL isconst (in-only).

static int PARMFLAG_CONVMAJORI TY

Parameter associated with this flag and passed to
IDL isan array whose majority will be
convolved.

static int PARMFLAG_| N_QUT
Parameter associated with this flag and passed to
IDL isin-out (mutable).

static int PARMFLAG _NO_CONVMAJORI TY

Parameter associated with this flag and passed to
IDL isan array whose majority will NOT be
convolved.

Inherited Member Summary

Methodsinherited from class Obj ect

equal s(Obj ect), getd ass(), hashCode(), notify(),
noti fyAll (), toString(), wait(long, int), wait(long, int),
wai t (I ong, int)

Fields
CONTROL_INPROC

public static final int CONTROL_I NPROC

Control flag for determining object isto be created in-process

JIDLConst IDL Connectivity Bridges

Appendix A: IDL Java Object API 369

CONTROL_OUTPROC

public static final int CONTROL_OUTPROC
Control flag for determining object isto be created out-of-process

IDL_ABORT_NOT_OWNER

public static final int |DL_ABORT_NOT_OANER

Error code when an abort request is made, but the calling object does not have
permission to request the abort.

Note that when this error occurs, a JIDL Exception isthrown to the calling client with
thisvalue asits error code.

See Also:

JIDLException, JIDLObjectl.abort()
IDL_ABORT_NOT_OWNER_MESSAGE

public static final java.lang. String | DL_ABORT_NOT_OANER MESSAGE

Internal use. Error message when an abort request is made, but the calling object does
not have permission to request the abort.

IDL_ABORTED
public static final int |DL_ABORTED
Error code returned when IDL processing has aborted due to an abort request.

Note that when this error occurs, a JIDL AbortedException is thrown to the calling
client with this value as its error code.

See Also:
JIDLADbortedException, J DL Exception, JIDL Objectl.abort()
IDL_BUSY

public static final int I|IDL_BUSY
Error code returned if IDL is called while processing another request.

Note that when this error occurs, a JI DL BusyException isthrown to the calling client
with this value as its error code.

IDL Connectivity Bridges JIDLConst

370

Appendix A: IDL Java Object API

See Also:
JIDLBusyException, JIDLException, J DL Objectl.abort()

IDL_NOTHING_TO_ABORT

public static final int |DL_NOTH NG TO ABORT
Error code when an abort request is made, but there is nothing to abort.

Note that when this error occurs, a JIDLException is thrown to the calling client with
thisvalue asits error code.

See Also:
JDLException, JIDLObjectl.abort()

IDL_NOTHING_TO_ABORT_MESSAGE

public static final java.lang.String
| DL_NOTHI NG _TO_ABORT _MESSAGE

Internal use. Error message when an abort request is made, but there is nothing to
abort.

PARMFLAG_CONST

public static final int PARMFLAG CONST

Parameter associated with thisflag and passed to IDL isconst (in-only). It is expected
IDL will not change this parameter. Any changes that happened in IDL will be
ignored.

See Also:
PARMFLAG_IN_OUT

PARMFLAG_CONVMAJORITY

JIDLConst

public static final int PARMFLAG CONVMAJORI TY

Parameter associated with thisflag and passed to IDL is an array whose majority will
be convolved.

Note that if set, the array will be convolved when passed from Javato IDL, and
convolved again in the in-out case, when passed back to Java.

See Also:
PARMFLAG_NO_CONVMAJORITY

IDL Connectivity Bridges

Appendix A: IDL Java Object API 371

PARMFLAG_IN_OUT

public static final int PARMFLAG | N QUT

Parameter associated with this flag and passed to IDL isin-out (mutable). It is
expected IDL may change this parameter and on return from IDL the datawill be
copied back to the Java object.

See Also:
PARMFLAG _CONST

PARMFLAG_NO_CONVMAJORITY

public static final int PARMFLAG NO CONVMAJCRI TY

Parameter associated with this flag and passed to IDL is an array whose mgjority will
NOT be convolved.

Note that for arrays of dimensions 2 throught 8, this may be quicker than
PARMFLAG_CONVMAJORITY because the array doesn’'t need to be re-ordered
when passed between Java and IDL memory space.

See Also:
PARMFLAG _CONVMAJORITY

IDL Connectivity Bridges JIDLConst

372 Appendix A: IDL Java Object API

JIDLDouble

Declaration

public class Jl DLDoubl e inplenents JI DLNunber,
java.io. Serializable

j ava. |l ang. Qbj ect

I
+--comidl.javaidl.Jl DLDoubl e

All Implemented Interfaces:

JI DLNunber, java.io. Serializable

Description
The JIDLDouble class wraps a double as a mutabl e object usable by the Java-1DL
Export bridge.
Member Summary
Constructors
J1 DLDoubl e(doubl e val ue)
Construct awrapper object.
JI DLDoubl e(JI DLNunber val ue)
Construct awrapper object.
M ethods
bool ean bool eanVal ue()
Return the value of the wrapped primitive.
byte byt eVal ue()
Return the value of the wrapped primitive
char char Val ue()
Return the value of the wrapped primitive
doubl e doubl eVal ue()
Return the value of the wrapped primitive
f | oat fl oat Val ue()
Return the value of the wrapped primitive

JIDLDouble IDL Connectivity Bridges

Appendix A: IDL Java Object API

373

Member Summary

i nt i nt Val ue()

Return the value of the wrapped primitive
| ong | ongVal ue()

Return the value of the wrapped primitive
voi d set Val ue(doubl e val ue)

Change the value of the wrapper object
voi d set Val ue(JI DLNunber val ue)

Change the value of the wrapper object
short short Val ue()

Return the value of the wrapped primitive

java.lang. String

toString()

Inherited Member Summary

Methods inherited from class Obj ect

equal s(Obj ect),

int)

get C ass(), hashCode(), notify(),
noti fyAll (), wait(long, int), wait(long, int), wait(long,

Constructors

JIDLDouble(double)

publ i ¢ JI DLDoubl e(doubl e val ue)

Construct a wrapper object.

Parameters:

val ue - value to wrap for use in the export bridge

JIDLDouble(JIDLNumber)

public JI DLDoubl e(com i dl .javai dl . JI DLNunber val ue)

Construct a wrapper object.

IDL Connectivity Bridges

JIDLDouble

374

Appendix A: IDL Java Object API

Parameters:

val ue - JIDLNumber to wrap for use in the export bridge

Methods

booleanValue()

publ i ¢ bool ean bool eanVal ue()

Return the value of the wrapped primitive.
Specified By:

booleanValue in interface JIDL Number
Returns:

t r ue if non-zero, f al se otherwise

byteValue()

public byte byteVal ue()
Return the value of the wrapped primitive

Specified By:
byteValue in interface JIDL Number
Returns:

value that is wrapped by this object

charValue()

publi ¢ char charVal ue()

Return the value of the wrapped primitive
Specified By:

charValue in interface JIDL Number
Returns:

value that is wrapped by this object

doubleValue()

JIDLDouble

publ i ¢ doubl e doubl eVal ue()

IDL Connectivity Bridges

Appendix A: IDL Java Object API 375

Return the value of the wrapped primitive
Specified By:
doubleVauein interface JIDL Number
Returns:
value that is wrapped by this object
floatValue()
public float floatVal ue()
Return the value of the wrapped primitive
Specified By:
floatValue in interface JIDL Number
Returns:
value that is wrapped by this object
intValue()
public int intValue()
Return the value of the wrapped primitive
Specified By:
intValue in interface J DL Number
Returns:
value that is wrapped by this object
longValue()
public I ong | ongVal ue()
Return the value of the wrapped primitive
Specified By:
longValue in interface JIDL Number
Returns:

value that is wrapped by this object

IDL Connectivity Bridges JIDLDouble

376 Appendix A: IDL Java Object API

setValue(double)

public void setVal ue(doubl e val ue)

Change the value of the wrapper object

Parameters:

val ue - primitive value to wrap for use in the export bridge
setValue(JIDLNumber)

public void setValue(comidl.javaidl.Jl DLNunber val ue)

Change the value of the wrapper object

Specified By:

setValuein interface JIDL Number

Parameters:

val ue - JIDLNumber to wrap for use in the export bridge
shortValue()

public short short Val ue()
Return the value of the wrapped primitive

Specified By:
shortValue in interface JIDLNumber
Returns:

value that is wrapped by this object
toString()

public java.lang. String toString()
Overrides:

toStringinclassbj ect

JIDLDouble IDL Connectivity Bridges

Appendix A: IDL Java Object API

JIDLEXxception

Declaration

public class JIDLException extends java.lang. Error inplenents

java.io. Serializable
j ava. |l ang. Qbj ect

|
+--java. |l ang. Thr owabl e

I
+--java.l ang. Error

+--comidl.javaidl.JI DLException

All Implemented Interfaces:

java.io. Serializable
Direct Known Subclasses:
JIDLADortedException, JIDLBusyException
Description

Thrown when acall to IDL encounters an error.

377

Member Summary

Methods

| ong get Error Code()

Get the IDL error code associated with the IDL error.

java.lang. String toString()

IDL Connectivity Bridges

JIDLEXxception

378 Appendix A: IDL Java Object API

Inherited Member Summary

Methodsinherited from class Obj ect

equal s(bj ect), getd ass(), hashCode(), notify(),

noti fyAll (), wait(long, int), wait(long, int), wait(long,
int)

Methodsinherited from class Thr owabl e

filllnStackTrace(), getCause(), getlLocalizedMessage(),
get Message(), getStackTrace(), initCause(Throwabl e),
printStackTrace(PrintWiter),
printStackTrace(PrintWiter),
printStackTrace(PrintWiter),

set St ackTrace(St ackTraceEl emrent[])

Methods

getErrorCode()

public | ong get Error Code()
Get the IDL error code associated with the IDL error.

toString()
public java.lang. String toString()
Overrides:

toStringinclassThr owabl e

JIDLEXxception IDL Connectivity Bridges

Appendix A: IDL Java Object API

JIDLFloat

Declaration

public class JIDLFloat inplenments JI DLNunber,
java.io. Serializable

j ava. |l ang. Qbj ect

+--comidl.javaidl.Jl DLFl oat

All Implemented Interfaces:

JI DLNunber, java.io. Serializable

379

Description
The JIDLFoat class wraps afloat as a mutable object usable by the Java-IDL Export
bridge.
Member Summary
Constructors
JI DLFIl oat (f 1 oat val ue)
Construct awrapper object.
JI DLFI oat (JI DLNunber val ue)
Construct awrapper object.
Methods
bool ean bool eanVal ue()
Return the value of the wrapped primitive.
byte byt eVal ue()
Return the value of the wrapped primitive
char char Val ue()
Return the value of the wrapped primitive
doubl e doubl eVal ue()
Return the value of the wrapped primitive

IDL Connectivity Bridges

JIDLFloat

380 Appendix A: IDL Java Object API

Member Summary

f1 oat f I oat Val ue()
Return the value of the wrapped primitive

i nt i nt Val ue()
Return the value of the wrapped primitive

| ong | ongVal ue()
Return the value of the wrapped primitive

voi d set Val ue(fl oat val ue)

voi d set Val ue(JI DLNunber val ue)
Change the value of the wrapper object

short short Val ue()
Return the value of the wrapped primitive

java.lang. String toString()
Return the value of the wrapped primitive

Inherited Member Summary

Methodsinherited from class Obj ect

equal s(Obj ect), getd ass(), hashCode(), notify(),
noti fyAll (), wait(long, int), wait(long, int), wait(long,
int)

Constructors

JIDLFloat(float)

public JI DLFI oat (fl oat val ue)
Construct a wrapper object.
Parameters:

val ue - value to wrap for use in the export bridge
JIDLFloat(JIDLNumber)

public JIDLFl oat (comidl.javaidl.Jl DLNumber val ue)
Construct a wrapper object.

JIDLFloat IDL Connectivity Bridges

Appendix A: IDL Java Object API 381

Parameters:

val ue - JIDLNumber to wrap for use in the export bridge
Methods

booleanValue()

publ i ¢ bool ean bool eanVal ue()

Return the value of the wrapped primitive.
Specified By:

booleanValue in interface JJIDL Number
Returns:

t r ue if non-zero, f al se otherwise

byteValue()

public byte byteVal ue()
Return the value of the wrapped primitive

Specified By:
byteValue in interface JIDL Number
Returns:

value that is wrapped by this object
charValue()

publi ¢ char charVal ue()
Return the value of the wrapped primitive
Specified By:
charValue in interface JIDL Number
Returns:

value that is wrapped by this object
doubleValue()

publ i ¢ doubl e doubl eVal ue()

IDL Connectivity Bridges JIDLFloat

382

Return the value of the wrapped primitive
Specified By:

doubleVauein interface JIDL Number
Returns:

value that is wrapped by this object

floatValue()

public float floatVal ue()
Return the value of the wrapped primitive
Specified By:
floatValue in interface JIDLNumber
Returns:

value that is wrapped by this object

intValue()

JIDLFloat

public int intValue()
Return the value of the wrapped primitive

Specified By:
intValue in interface JIDL Number
Returns:

value that is wrapped by this object

longValue()

public I ong | ongVal ue()
Return the value of the wrapped primitive
Specified By:
longValue in interface JIDL Number
Returns:

value that is wrapped by this object

Appendix A: IDL Java Object API

IDL Connectivity Bridges

Appendix A: IDL Java Object API 383

setValue(float)
public void setVal ue(float val ue)

setValue(JIDLNumber)
public void setValue(comidl.javaidl.Jl DLNunber val ue)
Change the value of the wrapper object
Specified By:
setValuein interface JIDL Number
Parameters:

val ue - primitive value to wrap for use in the export bridge

shortValue()

public short short Val ue()
Return the value of the wrapped primitive
Specified By:
shortValue in interface JI DL Number
Returns:

value that iswrapped by this object
toString()

public java.lang. String toString()
Return the value of the wrapped primitive

Overrides:
toStringinclassbj ect
Returns:

value that is wrapped by this object

IDL Connectivity Bridges JIDLFloat

384 Appendix A: IDL Java Object API

JIDLInteger

Declaration

public class JIDLInteger inplements Jl DLNunber,
java.io. Serializable

j ava. |l ang. Qbj ect

+--comidl.javaidl.JlDLI nteger
All Implemented Interfaces:

JI DLNunber, java.io. Serializable

Description
The JIDLInteger classwraps an int as amutable object usable by the Java-1DL Export
bridge.
Member Summary
Constructors
JI DLI nt eger (i nt val ue)
Construct awrapper object.
JI DLI nt eger (JI DLNunber val ue)
Construct awrapper object.
Methods
bool ean bool eanVal ue()
Return the value of the wrapped primitive.
byt e byt eval ue()
Return the value of the wrapped primitive
char char Val ue()
Return the value of the wrapped primitive
doubl e doubl eVal ue()
Return the value of the wrapped primitive

JIDLInteger IDL Connectivity Bridges

Appendix A: IDL Java Object API

385

Member Summary

fl oat

f | oat Val ue()
Return the value of the wrapped primitive

int

i nt Val ue()
Return the value of the wrapped primitive

| ong

| ongVal ue()
Return the value of the wrapped primitive

voi d

set Val ue(int val ue)
Change the value of the wrapper object

voi d

set Val ue(JI DLNunmber val ue)
Change the value of the wrapper object

short

short Val ue()
Return the value of the wrapped primitive

java.lang. String

toString()

Return the value of the wrapped primitive

Inherited Member Summary

Methods inherited from class Obj ect

equal s(Obj ect),

int)

get C ass(), hashCode(), notify(),
noti fyAll (), wait(long, int), wait(long, int), wait(long,

Constructors

JIDLInteger(int)

public JIDLInteger(int value)

Construct a wrapper object.

Parameters:

val ue - value to wrap for use in the export bridge

JIDLInteger(JIDLNumber)

public JIDLInteger(comidl.javaidl.Jl DLNunber val ue)

IDL Connectivity Bridges

JIDLInteger

386

Appendix A: IDL Java Object API

Construct a wrapper object.
Parameters:

val ue - JIDLNumber to wrap for usein the export bridge

Methods

booleanValue()

publ i ¢ bool ean bool eanVal ue()

Return the value of the wrapped primitive.
Specified By:

booleanValue in interface JJIDL Number
Returns:

t r ue if non-zero, f al se otherwise

byteValue()

public byte byteVal ue()
Return the value of the wrapped primitive

Specified By:
byteValue in interface JIDL Number
Returns:

value that is wrapped by this object

charValue()

JIDLInteger

publi c char charVal ue()

Return the value of the wrapped primitive
Specified By:

charVaue in interface JI DL Number
Returns:

value that is wrapped by this object

IDL Connectivity Bridges

Appendix A: IDL Java Object API 387

doubleValue()

publ i ¢ doubl e doubl eVal ue()
Return the value of the wrapped primitive

Specified By:
doubleVauein interface JIDL Number
Returns:

value that is wrapped by this object
floatValue()

public float floatVal ue()
Return the value of the wrapped primitive

Specified By:
floatValue in interface JIDL Number
Returns:

value that is wrapped by this object
intValue()

public int intValue()
Return the value of the wrapped primitive
Specified By:
intValue in interface JIDL Number
Returns:

value that is wrapped by this object
longValue()

public [ong | ongVal ue()
Return the value of the wrapped primitive
Specified By:

longValue in interface JJDLNumber

IDL Connectivity Bridges JIDLInteger

388 Appendix A: IDL Java Object API

Returns:
value that is wrapped by this object
setValue(int)

public void setVal ue(int val ue)

Change the value of the wrapper object

Parameters:

val ue - primitive value to wrap for use in the export bridge
setValue(JIDLNumber)

public void setValue(comidl.javaidl.Jl DLNunber val ue)

Change the value of the wrapper object

Specified By:

setValuein interface JIDL Number

Parameters:

val ue - JIDLNumber to wrap for usein the export bridge
shortValue()

public short short Val ue()
Return the value of the wrapped primitive

Specified By:

shortValue in interface JIDL Number

Returns:

value that is wrapped by this object
toString()

public java.lang. String toString()
Return the value of the wrapped primitive

Overrides:

toStringinclassbj ect

JIDLInteger IDL Connectivity Bridges

Appendix A: IDL Java Object API 389

Returns:

value that is wrapped by this object

IDL Connectivity Bridges JIDLInteger

390 Appendix A: IDL Java Object API
JIDLKeyListener

Declaration
public interface Jl DLKeyLi stener

All Known Implementing Classes:
JIDLCanvas
Description

The listener interface for receiving keyboard events (key pressed, key released) on a
JIDLCanvas.

The classthat isinterested in handling these events implements this interface (and all
the methods it contains). The listener object created from that class is then registered
with the JIDL Canvas using the addIDLKeyListener method. The listener is
unregistered with the removel DLKeyL istener.

The JIDL Canvas automatically handles key events whether a program registers an
additional JIDLKeyListener or not. The JIDLCanvasisitself aJDLKeyListener and
provides default behavior for press and release. For akey press or key release, the
default behavior isfor the JIDL Canvasto call the IDL program’s OnKeyboard
method.

Note that clients should not register to listen to JIDL Canvas KeyEvents using a
KeyListener, preferring the JIDLKeyListener instead.

See Also:

JI DLCanvas, java.awt.event. KeyEvent,
java. aw . event . KeyLi st ener

JIDLKeyListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 391

Member Summary
Methods

voi d | DLkeyPressed(JI DLObj ect| obj,
java. awt . event. KeyEvent event, int x, int y)
A key press has occurred inside the JIDL Canvas.

voi d | DLkeyRel eased(JI DLObj ect| obj,
java. awt . event. KeyEvent event, int x, int y)
A key release has occurred inside the J DL Canvas.

Methods

IDLkeyPressed(JIDLODbjectl, KeyEvent, int, int)

public void | DLkeyPressed(comidl.javaidl.Jl DLCbjectl obj,
j ava. aw . event . KeyEvent event, int x, int y)

A key press has occurred inside the JIDL Canvas.

The default behavior of JDL Canvas's default implementation isto call the IDL
program’s OnKeyboard method.

Parameters:

obj - The JDLCanvas in which the event occurred.

event - The key event

x - The x pixel location in the canvas where the event occurred

y - They pixel location in the canvas where the event occurred
IDLkeyReleased(JIDLObjectl, KeyEvent, int, int)

public void | DLkeyRel eased(comidl.javaidl.JI DLObjectl obj,
j ava. awm . event . KeyEvent event, int x, int y)

A key release has occurred inside the JIDL Canvas.

The default behavior of JDLCanvas's default implementation isto call the IDL
program’s OnKeyboard method.

Parameters:

obj - The JDLCanvas in which the event occurred.

IDL Connectivity Bridges JIDLKeyListener

392 Appendix A: IDL Java Object API

event - The key event
x - The x pixel location in the canvas where the event occurred

y - They pixel location in the canvas where the event occurred

JIDLKeyListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 393

JIDLLong

Declaration

public class JlDLLong inplenments Jl DLNunber,
java.io. Serializable

j ava. |l ang. Qbj ect

+--comidl.javaidl.JlDLLong

All Implemented Interfaces:

JI DLNunber, java.io. Serializable

Description
The JIDLLong class wraps along as a mutable object usable by the Java-1DL Export
bridge.
Member Summary
Constructors
JI DLLong(JI DLNunber val ue)
Construct a wrapper object.
JI DLLong(| ong val ue)
Construct awrapper object.
Methods
bool ean bool eanVal ue()
Return the value of the wrapped primitive.
byte byt eVal ue()
Return the value of the wrapped primitive
char char Val ue()
Return the value of the wrapped primitive
doubl e doubl eVal ue()
Return the value of the wrapped primitive

IDL Connectivity Bridges JIDLLong

394 Appendix A: IDL Java Object API

Member Summary

fl oat f I oat Val ue()
Return the value of the wrapped primitive

i nt i nt Val ue()
Return the value of the wrapped primitive

| ong | ongVal ue()
Return the value of the wrapped primitive

voi d set Val ue(JI DLNunber val ue)
Change the value of the wrapper object

voi d set Val ue(l ong val ue)
Change the value of the wrapper object

short short Val ue()
Return the value of the wrapped primitive

toString()
java.lang. String | Returnthe value of the wrapped primitive

Inherited Member Summary

Methodsinherited from class Obj ect

equal s(Obj ect), getd ass(), hashCode(), notify(),
noti fyAll (), wait(long, int), wait(long, int), wait(long,
int)

Constructors

JIDLLong(JIDLNumber)
public JlIDLLong(comidl.javaidl.Jl DLNunber val ue)
Construct a wrapper object.
Parameters:
val ue - JIDLNumber to wrap for usein the export bridge

JIDLLong(long)

public JIDLLong(l ong val ue)

JIDLLong IDL Connectivity Bridges

Appendix A: IDL Java Object API 395

Construct a wrapper object.
Parameters:

val ue - valueto wrap for use in the export bridge
Methods

booleanValue()
publ i ¢ bool ean bool eanVal ue()
Return the value of the wrapped primitive.
Specified By:
booleanValue in interface JIDL Number
Returns:
t r ue if non-zero, f al se otherwise
byteValue()
public byte byteVal ue()
Return the value of the wrapped primitive
Specified By:
byteValue in interface JIDL Number
Returns:
value that is wrapped by this object
charValue()
publi c char charVal ue()
Return the value of the wrapped primitive
Specified By:
charVaue in interface JI DL Number
Returns:

value that is wrapped by this object

IDL Connectivity Bridges JIDLLong

396

doubleValue()

publ i ¢ doubl e doubl eVal ue()
Return the value of the wrapped primitive
Specified By:
doubleValue in interface J DL Number
Returns:

value that is wrapped by this object

floatValue()

JIDLLong

public float floatVal ue()
Return the value of the wrapped primitive

Specified By:
floatValue in interface JIDL Number
Returns:

value that is wrapped by this object

intValue()

public int intValue()
Return the value of the wrapped primitive

Specified By:
intValue in interface JIDL Number
Returns:

value that is wrapped by this object

longValue()

public [ong | ongVal ue()
Return the value of the wrapped primitive
Specified By:

longValue in interface JJDLNumber

Appendix A: IDL Java Object API

IDL Connectivity Bridges

Appendix A: IDL Java Object API 397

Returns:

value that is wrapped by this object
setValue(JIDLNumber)

public void setValue(comidl.javaidl.Jl DLNunber val ue)

Change the value of the wrapper object

Specified By:

setValuein interface JIDL Number

Parameters:

val ue - JIDLNumber to wrap for usein the export bridge
setValue(long)

public void setVal ue(l ong val ue)

Change the value of the wrapper object

Parameters:

val ue - primitive value to wrap for use in the export bridge
shortValue()

public short short Val ue()
Return the value of the wrapped primitive

Specified By:
shortValue in interface J DL Number
Returns:

value that is wrapped by this object
toString()

public java.lang. String toString()
Return the value of the wrapped primitive

Overrides:

toStringinclassbj ect

IDL Connectivity Bridges JIDLLong

398 Appendix A: IDL Java Object API

Returns:

value that is wrapped by this object

JIDLLong IDL Connectivity Bridges

Appendix A: IDL Java Object API 399

JIDLMouseListener

Declaration
public interface Jl DLMbuselLi stener

All Known Implementing Classes:
JIDLCanvas
Description

The listener interface for receiving mouse events from IDL (press, release, enter, and
exit) onaJIDLCanvas. A mouse event is generated when the mouse is pressed,
rel eased, the mouse cursor enters or leaves the JIDL Canvas component.

Note: Mouse moves and drags are tracked using JI DL MouseM otionL istener.

The classthat isinterested in processing an IDL mouse event implements this
interface (and all the methods it contains). The listener object created from that class
isthen registered with the JIDL Canvas using the addl DL M ousel istener method. The
listener is unregistered with the removel DL MouseL istener.

The JDLCanvas automatically handles mouse events whether a program registers an
additional IDLMouseListener or not. The IDLCanvasisitself a
JDLMouseListener and provides default behavior for the 4 events, as denoted in the
specific methods below.

Note that clients should not register to listen to JIDL Canvas MouseEvents using a
MouseL istener, preferring the JIDLMouseListener instead.

See Also:

JI DLCanvas, Jl DLMbuseMbti onLi stener, java. awt.event. MouseEvent,
j ava. awt . event . MouselLi st ener

IDL Connectivity Bridges JIDLMouseListener

400 Appendix A: IDL Java Object API

Member Summary
Methods
voi d | DLmouseEnt er ed(JI DLObj ect | obj,
java. awt . event . MouseEvent event)
The mouse has entered the JIDL Carvas.
voi d | DLnouseExi ted(JI DLObj ect | obj,
java. awt . event . MouseEvent event)
The mouse has exiting the JIDL Canvas.
voi d | DLnousePressed(JI DLObj ect | obj,
java. awt . event . MouseEvent event)
A mouse button was pressed inside the JIDL Canvas.
voi d | DLnouseRel eased(JI DLObj ect| obj,
java. awt . event . MouseEvent event)
A mouse button was released inside the JIDL Canvas.
Methods

IDLmouseEntered(JIDLODbjectl, MouseEvent)

public void | DLmouseEnt ered(com i dl.javaidl.JlI DLObj ectl obj,
j ava. awt . event . MouseEvent event)

The mouse has entered the JIDL Canvas.

The default behavior of J DL Canvas's default implementation isto call the IDL
program’s OnEnter method.

Parameters:

obj - The JDLCanvas in which the event occurred.

event - The mouse event
IDLmouseExited(JIDLObjectl, MouseEvent)

public void | DLmouseExited(comidl.javaidl.Jl DLObjectl obj,
j ava. awm . event . MouseEvent event)

The mouse has exiting the JIDL Canvas.

The default behavior of JIDLCanvas's default implementation isto call the IDL
program’s OnExit method.

JIDLMouseListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 401

Parameters:

obj - The JDL Canvasin which the event occurred.

event - The mouse event
IDLmousePressed(JIDLObjectl, MouseEvent)

public void | DLmousePressed(comidl.javaidl.JlI DLObj ectl obj,
j ava. awm . event . MouseEvent event)

A mouse button was pressed inside the JIDL Canvas.

The default behavior of JIDLCanvas's default implementation isto call the IDL
program’s OnM ouseDown method.

Parameters:
obj - The JDLCanvas in which the event occurred.
event - The mouse event

IDLmouseReleased(JIDLODbjectl, MouseEvent)

public void | DLmouseRel eased(comidl.javaidl.JI DLObject! obj,
j ava. awm . event . MouseEvent event)

A mouse button was released inside the J DL Canvas.

The default behavior of JDLCanvas's default implementation isto call the IDL
program’s OnM ouseUp method.

Parameters:

obj - The JDLCanvas in which the event occurred.

event - The mouse event

IDL Connectivity Bridges JIDLMouseListener

402 Appendix A: IDL Java Object API

JIDLMouseMotionListener

Declaration
public interface Jl DLMbuseMdt i onLi stener

All Known Implementing Classes:

JIDLCanvas
Description

The listener interface for receiving mouse motion events from IDL (move and drag)
on aJIDL Canvas. (Mouse presses, releases, enter and exits are tracked using
JIDLMouseL istener.)

Theclassthat isinterested in processing an IDL mouse motion event implementsthis
interface (and all the methods it contains). The listener object created from that class
is then registered with the JIDL Canvas using the addl DL M ouseM otionL istener
method. The listener is unregistered with the removel DL MouseM otionL istener.

The JIDL Canvas automatically handles mouse mation events whether a program
registers an additional JIDLMouseMotionListener or not. The JIDLCanvasisitself a
JDLMouseMotionListener and provides default behavior which isto call the IDL
object’s OnMouseM otion method.

Note that clients should not register to listen to JI DL Canvas mouse motion events
using a MouseM otionListener, preferring the JJDLMouseM otionL istener instead.

See Also:

JI DLCanvas, JIDLMbuselListener, java.awt.event.MuseEvent,
j ava. awt . event . MouseMbt i onLi st ener

JIDLMouseMotionListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 403

Member Summary
Methods
voi d | DLnouseDr agged(JI DLObj ect | obj,
java. awt . event . MouseEvent event)
A mouse was dragged inside the JIDL Canvas.
voi d | DLnouseMoved(JI DLOhj ect | obj,
java. awt . event . MouseEvent event)
A mouse was moved inside the JIDL Canvas.
Methods

IDLmouseDragged(JIDLObjectl, MouseEvent)

public void | DLmouseDr agged(com i dl.javaidl.JlI DLObj ect| obj,
j ava. awt . event . MouseEvent event)

A mouse was dragged inside the JIDL Canvas.

The default behavior of JDL Canvas's default implementation isto call the IDL
program’s OnM ouseM otion method.

Parameters:

obj - The JDLCanvas in which the event occurred.

event - The mouse event
IDLmouseMoved(JIDLObjectl, MouseEvent)

public void | DLmouseMoved(comidl.javaidl.Jl DLCbjectl obj,
j ava. awm . event . MouseEvent event)

A mouse was moved inside the JIDL Carnvas.

The default behavior of JIDLCanvas's default implementation isto call the IDL
program’s OnMouseM otion method.

Parameters:

obj - The JDLCanvas in which the event occurred.

event - The mouse event

IDL Connectivity Bridges JIDLMouseMotionListener

404 Appendix A: IDL Java Object API
JIDLNotifyListener

Declaration
public interface JI DLNotifyLi stener

Description

The listener interface for receiving notify events from IDL.

IDL objects that sub-class itComponent may trigger a notification by calling
IDLitComponent::Notify. Both drawable (JIDL Canvas) and non-drawable
(JIDLObject) wrapper objects may be listened to. However by default, JI DL Object
and JIDL Canvas objects do NOT listen to their output events.

Theclassthat isinterested in receiving IDL notify events of a particular object *
implements this interface. The listener object created from that classis registered
with the JIDL Objectl using the addIDLNotifyListener method. The listener is
unregistered with the removel DLNotifyListener.

See Also:

JDLCanvas, JIDLObject, JIDLObjectl

Member Summary
M ethods
voi d Onl DLNoti fy(JI DLObj ectl obj, java.lang.String
sl, java.lang. String s2)
An IDL notify has occurred.
Methods

OnIDLNotify(JIDLObjectl, String, String)

public void Onl DLNotify(comidl.javaidl.Jl DLObjectl obj,
java.lang. String s1, java.lang. String s2)

An IDL notify has occurred.

JIDLNotifyListener IDL Connectivity Bridges

Appendix A: IDL Java Object API 405

Parameters:
obj - The JDLObjectl in which the event occurred.
s1 - Thefirst string parameter sent via IdllComponent:Notify

s2 - The second string parameter sent via |dll Component:Notify

IDL Connectivity Bridges JIDLNotifyListener

406 Appendix A: IDL Java Object API

JIDLNumber

Declaration

public interface Jl DLNunber

All Known Implementing Classes:

JDLShort, JIDLLong, JDLInteger, JDLFloat, IDLDouble, JIDLChar, JIDLByte,
JDLBoolean

Description

The JIDLNumber class wraps a primitive java number as a mutable object usable by
the Java-IDL Export bridge.

Member Summary
M ethods

bool ean bool eanVal ue()

Return the value of the wrapped primitive.
byte byt eVal ue()

Return the value of the wrapped primitive.
char char Val ue()

Return the value of the wrapped primitive.
doubl e doubl eVal ue()

Return the value of the wrapped primitive.
fl oat f 1 oat Val ue()

Return the value of the wrapped primitive.
i nt i nt Val ue()

Return the value of the wrapped primitive.

JIDLNumber IDL Connectivity Bridges

Appendix A: IDL Java Object API 407
Member Summary
| ong | ongVal ue()
Return the value of the wrapped primitive.
voi d set Val ue(JI DLNunber val ue)
Change the value of the wrapper object
short short Val ue()
Return the value of the wrapped primitive.
Methods
booleanValue()
publ i ¢ bool ean bool eanVal ue()
Return the value of the wrapped primitive.
Returns:
t r ue if non-zero, f al se otherwise
byteValue()
public byte byteVal ue()
Return the value of the wrapped primitive.
Returns:
value that is wrapped by this object
charValue()
publ i c char charVal ue()
Return the value of the wrapped primitive.
Returns:
value that is wrapped by this object
doubleValue()
publ i ¢ doubl e doubl eVal ue()
Return the value of the wrapped primitive.
IDL Connectivity Bridges JIDLNumber

408

Returns:

value that is wrapped by this object
floatValue()

public float floatVal ue()

Return the value of the wrapped primitive.

Returns:

value that is wrapped by this object
intValue()

public int intValue()

Return the value of the wrapped primitive.

Returns:

value that is wrapped by this object
longValue()

public I ong | ongVal ue()
Return the value of the wrapped primitive.
Returns:

value that is wrapped by this object
setValue(JIDLNumber)

Appendix A: IDL Java Object API

public void setVal ue(comidl.javaidl.Jl DLNunber val ue)

Change the value of the wrapper object

Parameters:

val ue - JIDLNumber to wrap for usein the export bridge

shortValue()

public short short Val ue()
Return the value of the wrapped primitive.

JIDLNumber

IDL Connectivity Bridges

Appendix A: IDL Java Object API 409

Returns:

value that is wrapped by this object

IDL Connectivity Bridges JIDLNumber

410

Appendix A: IDL Java Object API

JIDLODbject

Declaration

public class JIDLObject inplenents JI DLObjectl,
java.io. Serializable

j ava. |l ang. Qbj ect

I
+--comidl.javaidl.Jl DLObject

All Implemented Interfaces:

JIDLObjectl, java.io.Serializable

Description

JIDLObject

This classwraps an IDL object.

In many of the methods of this class, one or more flags are required to be specified
for parameters being passed to or from the bridge. These flags follow the following
guidelines:

For all types of parameters (subclasses of JJIDLNumber, JIDL String, JIDL Objectl and
JDLArray), aflag should be set that determines whether the parameter isin-only
(const) or in-out (we expect it to be changed by IDL). The constants that determine
this are either JIDLConst. PARMFLAG_CONST or

JDLConst. PARMFLAG_IN_OUT.

For parameters that are arrays, a flag should be set that tells the bridge whether the
array isto be convolved when passed to IDL. If the PARM_IN_OUT flag is set, this
flag will also tell the bridge whether to convolve the array when it is copied back to
Java. The constants that determine this are either

JDLConst. PARMFLAG_CONVMAJORITY or

JDLConst. PARMFLAG_NO_CONVMAJORITY.

For example, if the parameter in question is an array that isto be modified by IDL (in-
out) and needs to be convolved when passed to and from IDL, we would set its argpal
array member as follows:

argpal [2] = JIDLConst. PARVFLAG | N QUT | JI DLConst. PARVFLAG CONV
MAJORI TY;

IDL Connectivity Bridges

Appendix A: IDL Java Object API 411

Member Summary
Methods

voi d abort ()
Requests that the IDL process containing the
underlying IDL object abort its current activity.

voi d addl DLNot i fyLi stener (JI DLNot i fyLi st ener
|'istener)
Adds the specified IDL notify listener to receive IDL
notification events on this object.

voi d addl DLQut put Li st ener (JI DLQut put Li st ener
|istener)
Adds the specified IDL output listener to receive IDL
output events on this object.

java. l ang. Obj ect cal |l Function(java.lang. String shethodNane,
int iPalFl ag)
Call IDL function that accepts zero parameters.

java. l ang. Obj ect cal |l Function(java.lang. String shethodNane,
int argc, java.lang. Cbject argv, int[]
argpal , int iPalFlag)
Call IDL function.

voi d cal | Procedure(java.lang. String sMet hodNane)
Call IDL procedure that accepts zero parameters.

voi d cal | Procedure(java.lang. String sMet hodNane,
int argc, java.lang. Cbject argv, int[]
ar gpal)
Call IDL procedure.

voi d createObj ect ()
Create the wrapped object by calling IDL's ::INIT
method.

voi d createObject(int argc, java.lang. Ooject
argv, int[] argpal)
Creates the underlying IDL object.

voi d destroyQoj ect ()
Destroysthe underlying IDL object associated with the
wrapper.

IDL Connectivity Bridges JIDLObject

412 Appendix A: IDL Java Object API

Member Summary

voi d executeString(java.lang. String sCnd)
Execute the given command string in IDL.

java.lang. String get C assNane()
Get the class name of the object.

| ong get Cooki e()
Internal use.

java.lang. String get | DLObj ect O assNane()
Retrieves the IDL object class name of the underlying
IDL object.

java.lang. String get | DLObj ect Vari abl eNane()
When the underlying IDL object was created in the
IDL process, it was assigned a variable name.

java. |l ang. Obj ect get| DLVari abl e(j ava.l ang. String sVar)
Given avariable name, return the IDL variable.

java.lang. String get Qbj Var i abl eNamre()
Get the IDL Variable name of the given object

java.lang. String get ProcessNane()
Returns the name of the process that contains the
underlying IDL object.

java.l ang. Obj ect get Property(java.lang. String sProperty, int
i Pal Fl ag)
Call IDL getProperty method to get named property.

voi d initListeners()
Initialize listeners.

bool ean i sObj Created()
Determineif object has been created successfully.
bool ean i sQbj ect Creat ed()
Determineif object has been created successfully.
bool ean i sQbj ect Di spl ayabl e()
voi d renovel DLNot i fyLi stener (JI DLNoti fyLi st ener
|istener)

Removes the specified IDL notify listener so it no
longer receives IDL notifications.

JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 413

Member Summary

voi d renovel DLQut put Li st ener (JI DLQut put Li st ener
|'istener)
Removes the specified IDL output listener on this
object.

voi d set| DLVari abl e(j ava.l ang. String sVar,

j ava. |l ang. Ooj ect obj)
Set/Create an IDL variable of the given name and
value.

voi d set ProcessNane(j ava. |l ang. String process)
Set the process name that the object will be created in.

voi d set Property(java.lang. String sProperty,
java.lang. Obj ect obj, int iPalFlag)
Call IDL setProperty method to set named property.

java.lang. String toString()
Returns a string representation of the object.

Inherited Member Summary

Methods inherited from class Obj ect

equal s(Obj ect), getd ass(), hashCode(), notify(),
notifyAll(), wait(long, int), wait(long, int), wait(long,
int)

Methods

abort()

public void abort()

Requests that the IDL process containing the underlying IDL object abort its current
activity.

Thisisonly arequest and IDL may take along time before it actually stops.

The client can only Abort the current IDL activity if that wrapper object isthe current
“owner” of the underlying IDL.

IDL Connectivity Bridges JIDLObject

414

Appendix A: IDL Java Object API

Specified By:

abort in interface J DL Objectl

Throws:

JIDLException - If IDL encounters an error.
See Also:

JDLADbortedException

addIDLNotifyListener(JIDLNotifyListener)

public void
addl DLNot i fyLi stener(comidl.javaidl.JIDLNotifyListener |istener)

Adds the specified IDL notify listener to receive IDL notification events on this
object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:
addIDLNotifyListener in interface JJIDLObjectl
Parameters:

| i st ener -thelistener

addIDLOutputListener(JIDLOutputListener)

JIDLObject

public void
addl DLQut put Li stener(com i dl .javaidl.JI DLCut put Li stener |istener)

Adds the specified IDL output listener to receive IDL output events on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:
addIDL OutputListener in interface JIDL Objectl
Parameters:

| i st ener -thelistener

IDL Connectivity Bridges

Appendix A: IDL Java Object API 415

callFunction(String, int)

public java.l ang. Obj ect call Function(java.lang. String
sMet hodNane, int i Pal Fl ag)

Call IDL function that accepts zero parameters.
Parameters:
sMet hodNane - the function name

i Pal Fl ag - aflag determining whether areturned array if convolved or not. If the
returned value is not an array, thisvalue is zero. See class description for more
information.

Returns:

an Object of type JDLNumber, JIDLString, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:
JIDLEXxception - If IDL encounters an error.
See Also:
JIDLODbjectl.calFunction(String, int, Object[], int[], int)
callFunction(String, int, Object[], int[], int)
public java.l ang. Obj ect call Function(java.lang. String

sMet hodNarme, int argc, java.lang. Qoject[] argv, int[] argpal,
int iPal Fl ag)

Call IDL function.

The argpal parameter is an array of flags created by OR-ing constants from class
J DL Const. Each array element corresponds to the equivalent parameter in argv.

Specified By:
callFunction in interface JJIDLObjectl
Parameters:

sMet hodNane - the procedure name

ar gc - the number of parameters

IDL Connectivity Bridges JIDLObject

416

JIDLObject

Appendix A: IDL Java Object API

ar gv - array of Objectsto be passed to IDL. Thisarray should be of length ar gc and
should contain objects of type JIDLNumber, JIDLObject, JIDL String or JIDL Object.

ar gpal - array of flags denoting whether each argv parameter passed to be bridgeis
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length ar gc.

i Pal Fl ag - aflag determining whether areturned array if convolved or not. If the
returned value is not an array, thisvalue is zero.

Returns:

an Object of type JIDLNumber, JIDLString, JIDLObjectl or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type.

Throws:
JIDLEXxception - If IDL encounters an error.
See Also:

JIDLNumber, JIDLObject, JIDLString, JIDLATrray,

JDLConst. PARMFLAG_CONST, JDLConst.PARMFLAG_IN_OUT,
JDLConst. PARMFLAG _CONVMAJORITY,

JIDLConst. PARMFLAG_NO_CONVMAJORITY

callProcedure(String)

public void call Procedure(java.l ang. Stri ng sMet hodNane)

Call IDL procedure that accepts zero parameters.
Parameters:

sMet hodNane - the procedure name

Throws:

JIDLException - If IDL encounters an error.
See Also:

callProcedure(String, int, Object[], int[])

callProcedure(String, int, Object[], int[])

public void call Procedure(java.lang. Stri ng sMet hodNane,
int argc, java.lang. Qbject[] argv, int[] argpal)

Cadll IDL procedure.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 417
The argpal parameter is an array of flags created by OR-ing constants from class
JIDLConst. Each array element corresponds to the equivalent parameter in argv.
Specified By:
callProcedurein interface J DL Objectl
Parameters:
sMet hodNane - the procedure name
ar gc - the number of parameters

ar gv - array of Objectsto be passed to IDL. Thisarray should be of length ar gc and
should contain objects of type JDLNumber, JIDLObject, JIDLString or JIDL Object.

ar gpal - array of flags denoting whether each argv parameter passed to be bridgeis
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length ar gc.

Throws:
JIDLException - If IDL encounters an error.
See Also:

JDLNumber, JIDLObject, JDL String, JIDLATrray,

JDLConst. PARMFLAG_CONST, JDLConst. PARMFLAG_IN_OUT,
JDLConst. PARMFLAG_CONVMAJIORITY,
JDLConst.PARMFLAG_NO _CONVMAJORITY

createObject()
public void createQbject()
Create the wrapped object by calling IDL’s ::INIT method.
Used for ::INIT methods that take zero parameters.
Throws:
JIDLEXxception - If IDL encounters an error.
See Also:
createObject(int, Object[], int[])
createObject(int, Object]], int[])

public void createQoject(int argc, java.lang. Cbject[] argv,
int[] argpal)

IDL Connectivity Bridges JIDLObject

418

Appendix A: IDL Java Object API

Creates the underlying IDL object.

The argc, argv, argpal parameters are used to supply parameters to the underlying
IDL object’s ::Init method.

If the ::Init method does not have any parameters, the caller sets argc, argv, argpal to
0, null, null, respectively.

createObject does the following:
e Cadlls::Init method in the IDL object
e Cadlsthe superclassinitListeners method to initialize any event

handlers. The initListeners method has default behavior, which is different for
graphical and non-graphical objects. If the default behavior isnot desired, a sub-class
to modify the listener initialization may override the initListeners method.

Specified By:
createObject in interface JIDL Objectl
Parameters:

ar gc - the number of parametersto be passed to INIT

ar gv - array of Objectsto be passed to IDL. Thisarray should be of length argc and
should contain objects of type JJDLNumber, JIDLObject, JIDL String or JIDLArray.

ar gpal - array of flags denoting whether each argv parameter that is of type array
should be convolved or not. For parameters that are not arrays, the value within the
array will always be 0.

Throws:

JIDLEXxception - If IDL encounters an error.

destroyObject()

JIDLObject

public void destroyQbject()
Destroys the underlying IDL object associated with the wrapper.

If the object being destroyed is the last object within an OPS process, the OPS
processis also destroyed.

Note that this does not destroy the actual wrapper object. Because the wrapper object
isaJavaobject, it follows all the Java reference counting/garbage collection schemes.
Once al references to the wrapper object are released from Java code and once the
Java Virtual Machine calls the garbage collector, the wrapper object may be deleted
from memory.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 419

Specified By:
destroyObject in interface JIDL Objectl
executeString(String)

public void executeString(java.lang. String sCnd)
Execute the given command string in IDL.
Specified By:
executeString in interface JIDL Objectl
Parameters:
sCnd - the single-line command to execute in IDL.
Throws:
JIDLException - If IDL encounters an error.
getClassName()
public java.lang. String getd assNane()
Deprecated.
Replaced by getl DL ObjectClassName()
Get the class name of the object.
Returns:
class name (“” if object not created yet)
getCookie()
public | ong get Cooki e()
Internal use.
Specified By:
getCookie in interface JIDL Objectl
getIDLODbjectClassName()

public java.lang. String getlDLObj ect G assNanme()
Retrievesthe IDL object class name of the underlying IDL object.

IDL Connectivity Bridges JIDLObject

420

Appendix A: IDL Java Object API

Specified By:
getl DL ObjectClassName in interface JI DL Objectl
Returns:

the IDL object class name

getIDLODbjectVariableName()

public java.lang. String getlDLObj ect Vari abl eNanme()

When the underlying IDL object was created in the IDL process, it was assigned a
variable name. This method retrieves that name.

Specified By:
getlDLObjectVariableName in interface JI DL Objectl
Returns:

the variable name

getIDLVariable(String)

JIDLObject

public java.l ang. Obj ect getlDLVariable(java.lang. String sVar)
Given avariable name, return the IDL variable.

Note that in the case of arrays, the array will ALWAY S be convolved when passed
between Javaand IDL.

Specified By:

getIDLVariable in interface JIDL Objectl
Parameters:

sVar - ThelDL variable name
Returns:

an Object of type JDLNumber, JIDL String, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 421

getObjVariableName()
public java.lang. String get Cbj Vari abl eName()
Deprecated.
Replaced by getl DL ObjectVariableName()
Get the IDL Variable name of the given object
Returns:

a String representing the IDL Variable name

getProcessName()

public java.l ang. String getProcessNanme()

Returns the name of the process that contains the underlying IDL object. For an in-
process object, returns an empty string.

Specified By:
getProcessName in interface JIDL Objectl
Returns:

process name. Empty string if the processisin-process.
getProperty(String, int)

public java.l ang. Obj ect getProperty(java.lang. String
sProperty, int iPalFlag)

Cadll IDL getProperty method to get named property.
Specified By:

getProperty in interface JIDL Objectl

Parameters:

sProperty - the property name

i Pal Fl ag - aflag determining whether areturned array will be convolved or not. If
the returned value is not isignored.

Returns:

an Object of type JDLNumber, JIDLString, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

IDL Connectivity Bridges JIDLObject

422

JIDLObject

Appendix A: IDL Java Object API

Throws:
JIDLException - If IDL encounters an error.
See Also:

JDLNumber, JIDLObjectl, JDLString, JDLATrray,
JDLConst. PARMFLAG_CONVMAJORITY,
JDLConst. PARMFLAG_NO_CONVMAJIORITY

initListeners()

public void initListeners()
Initialize listeners.

This method is always called by createObject. The JIDLObject listens to no events,
but this method may be overridden by sub-classes to initialize a different set of
listeners (or none at al).

For example if a sub-class of JIDLObject wished to listen to IDL output events, it
would need to implement JIDL OutputListener and register to listen for these events
ininitListeners, asfollows:

public class newCbject extends JI DLCbject inplenents JlDLCut put Li
st ener

{

public void initListeners() {
addl DLQut put Li st ener (this);

}
voi d | DLout put (JI DLObj ectl obj, String s) {

/1 do sonething with the output

}

Specified By:

initListenersin interface JIDL Objectl
See Also:

JIDLNotifyListener, JIDL OutputListener

iIsObjCreated()

publ i c bool ean i sCbj Created()
Deprecated.
Replaced by isObjectCreated()

IDL Connectivity Bridges

Appendix A: IDL Java Object API 423

Determine if object has been created successfully.
Returns:

t rue if object created successfully, or f al seif object not created or creation was
unsuccessful.

iISObjectCreated()
publi ¢ bool ean i sObj ect Creat ed()
Determine if object has been created successfully.
Specified By:
isObjectCreated in interface JIDL Objectl
Returns:

t rue if object created successfully, or f al se if object not created or creation was
unsuccessful.

See Also:
createObject()
iIsObjectDisplayable()
publ i ¢ bool ean i sObj ect Di spl ayabl e()
Specified By:
isObjectDisplayable in interface JIDL Objectl
removelDLNotifyListener(JIDLNotifyListener)

public void
renovel DLNot i fyLi stener(comidl.javaidl.JIDLNotifyListener
| i stener)

Removes the specified IDL notify listener so it no longer receives IDL notifications.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:
removel DLNotifyListener in interface JIDL Objectl
Parameters:

| i stener -thelistener

IDL Connectivity Bridges JIDLObject

424 Appendix A: IDL Java Object API

removelDLOutputListener(JIDLOutputListener)

public void
renovel DLCut put Li st ener (com i dl . j avai dl . JI DLQut put Li st ener
|istener)

Removes the specified IDL output listener on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Specified By:
removel DL OutputListener in interface JIDL Objectl
Parameters:

|'i st ener - thelistener
setIDLVariable(String, Object)

public void setlDLVariable(java.lang. String sVar,
j ava. |l ang. Obj ect obj)

Set/Create an IDL variable of the given name and value.

Note that in the case of arrays, the array will ALWAY S be convolved when passed
between Javaand IDL.

Specified By:

setIDLVariable in interface J DL Objectl
Parameters:

sVar -thelDL variable name

obj - object to be passed to IDL. Should be an object of type JIDLNumber,
JDLObject, IDLString or JIDLATrray.

Throws:
JIDLException - If IDL encounters an error.
setProcessName(String)

public void setProcessName(j ava. |l ang. String process)
Set the process name that the object will be created in.

The process name may only be set before createObject is called. If called after the
object has been created, this method call does nothing.

JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 425

Specified By:
setProcessName in interface JIDL Objectl
Parameters:

pr ocess - Process name. Empty String means create in same process (in-process).
setProperty(String, Object, int)

public void setProperty(java.lang. String sProperty,
java. |l ang. Obj ect obj, int iPal Flag)

Cadll IDL setProperty method to set named property.

The iPalFlag parameter is a set of flagsthat are or-ed together. Currently this
parameter is only used to specify whether a IDLArray being passedinto IDL is
convolved or not. For arrays argpal should be set to either

JDLConst. PARMFLAG_CONVMAJORITY or

JDLConst. PARMFLAG_NO_CONVMAUJORITY.

Specified By:

setProperty in interface JIDL Objectl
Parameters:

sProperty - the property name

obj - object to be passed to IDL. Should be an object of type J DL Number,
JDLObject, IDLString or JIDL Object.

i Pal FI ag - flag denoting whether the passed in parameter is convolved or not.
Note: setProperty does not allow obj to be modified by IDL

Throws:
JIDLException - If IDL encounters an error.
See Also:

JIDLNumber, JIDLObject, JIDLString, JIDLATrray,
JDLConst. PARMFLAG_CONVMAJIORITY,
JIDLConst. PARMFLAG_NO_CONVMAJORITY

toString()

public java.lang. String toString()
Returns a string representation of the object.

IDL Connectivity Bridges JIDLObject

426 Appendix A: IDL Java Object API

Overrides:

t oSt ri ng inclass hj ect

JIDLObject IDL Connectivity Bridges

Appendix A: IDL Java Object API 427

JIDLODbjectl

Declaration
public interface JI DLObj ect !
All Known Implementing Classes:
JDLObject, IDLCanvas
Description

The interface that wrapped IDL objects must implement. Both non-drawable and
drawable IDL objects implement this interface.

In many of the methods of this class, one or more flags are required to be specified
for parameters being passed to or from the bridge. These flags follow the following
guidelines:

For all types of parameters (subclasses of JJIDLNumber, JIDL String, JIDL Objectl and
JDLATrray), aflag should be set that determines whether the parameter isin-only
(const) or in-out (we expect it to be changed by IDL). The constants that determine
this are either JIDLConst. PARMFLAG_CONST or

JDLConst. PARMFLAG_IN_OUT.

For parameters that are arrays, a flag should be set that tells the bridge whether the
array isto be convolved when passed to IDL. If the PARM_IN_OUT flag is set, this
flag will aso tell the bridge whether to convolve the array when it is copied back to
Java. The constants that determine this are either

JDLConst. PARMFLAG_CONVMAJORITY or

JDLConst. PARMFLAG_NO_CONVMAUJORITY.

For example, if the parameter in question isan array that isto be modified by IDL (in-
out) and needs to be convolved when passed to and from IDL, we would set its argpal
array member as follows:

argpal [2] = JIDLConst. PARVMFLAG | N OUT | JI DLConst. PARMFLAG CONV
MAJORI TY;

IDL Connectivity Bridges JIDLObjectl

428 Appendix A: IDL Java Object API

Member Summary

Methods

voi d abort ()
Requests that the IDL process containing the
underlying IDL object abort its current activity.

voi d addl DLNot i fyLi stener (JI DLNot i fyLi st ener

|'istener)

Adds the specified IDL notify listener to receive IDL
notification events on this object.

voi d addl DLQut put Li st ener (JI DLQut put Li st ener

| i stener)
Adds the specified IDL output listener to receive IDL
output events on this object.

j ava. |l ang. Obj ect cal |l Function(java.lang. String shethodNane,
int argc, java.lang. bject argv, int[]
argpal , int iPalFlag)

Call IDL function.

voi d cal | Procedure(java.lang. String sMet hodNane,
int argc, java.lang. Qbject argv, int[]
ar gpal)

Call IDL procedure.

voi d createObj ect(int argc, java.lang. Ooject
argv, int[] argpal)
Creates the underlying IDL object.

voi d destroyj ect ()
Destroys the underlying IDL object associated with the

Wrapper.

voi d executeString(java.lang. String sCnd)
Execute the given command string in IDL.

| ong get Cooki e()
Internal use.

java.lang. String get | DLObj ect Cl assNane()
Retrievesthe IDL object class name of the underlying
IDL object.

JIDLObjectl IDL Connectivity Bridges

Appendix A: IDL Java Object API 429

Member Summary

java.lang. String get | DLObj ect Vari abl eNane()
When the underlying IDL object was created in the IDL
process, it was assigned a variable name.

java.l ang. Qbj ect get I DLVari abl e(j ava. |l ang. String sVar)
Given avariable name, return the IDL variable.

java.lang. String get ProcessNane()
Returns the name of the process that contains the
underlying IDL object.

j ava. |l ang. Obj ect get Property(java.lang. String sProperty, int
i Pal Fl ag)
Cadll IDL getProperty method to get named property.

voi d initListeners()
Initialize any listeners.

bool ean i sCbj ect Creat ed()
Determineif object has been created successfully.
bool ean i sCbj ect Di spl ayabl e()
voi d renmovel DLNot i f yLi st ener (JI DLNot i f yLi st ener
|'istener)

Removes the specified IDL notify listener so it no
longer receives IDL notifications.

voi d renovel DLQut put Li st ener (JI DLCQut put Li st ener
| i stener)
Removes the specified IDL output listener on this
object.

voi d set| DLVari abl e(j ava.l ang. String sVar,

java. |l ang. Obj ect obj)
Set/Create an IDL variable of the given name and value.

voi d set ProcessNane(j ava. |l ang. String process)
Set the process name that the object will be created in.

voi d set Property(java.lang. String sProperty,
java.lang. Obj ect obj, int iPalFl ag)

Cadll IDL setProperty method to set named property.

IDL Connectivity Bridges JIDLObjectl

430

Appendix A: IDL Java Object API

Methods
abort()

public void abort()

Requests that the IDL process containing the underlying IDL object abort its current
activity.

Thisisonly arequest and IDL may take along time before it actually stops.

The client can only Abort the current IDL activity if that wrapper object isthe current
“owner” of the underlying IDL.

Throws:
JIDLExceptions - If IDL encounters an error.
See Also:

JDLADbortedException

addIDLNotifyListener(JIDLNotifyListener)

public void
addl DLNot i fyLi stener(comidl.javaidl.JIDLNotifyListener |istener)

Adds the specified IDL notify listener to receive IDL notification events on this
object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

| i stener -thelistener

addIDLOutputListener(JIDLOutputListener)

JIDLObjectl

public void
addl DLQut put Li stener(comidl .javaidl.JI DLCut put Li stener |istener)

Adds the specified IDL output listener to receive IDL output events on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

| i st ener -thelistener

IDL Connectivity Bridges

Appendix A: IDL Java Object API 431

callFunction(String, int, Object[], int[], int)

public java.l ang. Obj ect call Function(java.lang. String
sMet hodNane, int argc, java.lang. Cbject[] argv, int[] argpal,
i nt iPal Fl ag)

Call IDL function.

The argpal parameter isan array of flags created by OR-ing constants from class
JDL Const. Each array element corresponds to the equivalent parameter in argv.

Parameters:
sMet hodNane - the procedure name
ar gc - the number of parameters

ar gv - array of Objectsto be passed to IDL. Thisarray should be of length ar gc and
should contain objects of type JDLNumber, JIDLObject, JIDLString or JIDL Object.

ar gpal - array of flags denoting whether each argv parameter passed to be bridgeis
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length ar gc.

i Pal Fl ag - aflag determining whether areturned array if convolved or not. If the
returned value is not an array, thisvalue is zero.

Returns:

an Object of type JDLNumber, JIDLString, JJIDLObjectl or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type.

Throws:
JIDLEXxception - If IDL encounters an error.
See Also:

JDLNumber, JIDLObject, JDLString, JIDLATrray,

JDLConst. PARMFLAG_CONST, JDLConst. PARMFLAG_IN_OUT,
JDLConst. PARMFLAG _CONVMAJIORITY,

JDLConst.PARMFLAG _NO CONVMAJORITY

callProcedure(String, int, Object[], int[])

public void call Procedure(java.lang. String sMet hodName,
int argc, java.lang. Qbject[] argv, int[] argpal)

Call IDL procedure.

IDL Connectivity Bridges JIDLObjectl

432

Appendix A: IDL Java Object API

The argpal parameter is an array of flags created by OR-ing constants from class
JIDLConst. Each array element corresponds to the equivalent parameter in argv.

Parameters:
sMet hodNane - the procedure name
ar gc - the number of parameters

ar gv - array of Objectsto be passed to IDL. Thisarray should be of length ar gc and
should contain objects of type JIDLNumber, JIDLObject, JIDL String or JIDL Object.

ar gpal - array of flags denoting whether each argv parameter passed to be bridgeis
1) in-out vs constant; or 2) a convolved or non-convolved array This array should be
of length ar gc.

Throws:
JIDLEXxception - If IDL encounters an error.
See Also:

JIDLNumber, JIDLObject, JIDLString, JIDLATrray,

JDLConst. PARMFLAG_CONST, JDLConst.PARMFLAG_IN_OUT,
JDLConst. PARMFLAG_CONVMAJIORITY,

JIDLConst. PARMFLAG_NO_CONVMAJORITY

createObject(int, Object[], int[])

JIDLObjectl

public void createject(int argc, java.lang. Object[] argv,
int[] argpal)

Creates the underlying IDL object. The argc, argv, argpal parameters are used to
supply parameters to the underlying IDL object’s ::Init method. If the ::Init method
does not have any parameters, the caller setsargc, argv, and argpal to O, null, and null,
respectively. createObject does the following:

e Cadlls::Init method in the IDL object
e Cadllsthe superclassinitListeners method to initialize any event

handlers. The initListeners method has default behavior, which is different for
graphical and non-graphical objects. If the default behavior isnot desired, a sub-class
to modify the listener initialization may override the initListeners method.

Parameters:

ar gc - the number of parametersto be passed to INIT

IDL Connectivity Bridges

Appendix A: IDL Java Object API 433
ar gv - array of Objectsto be passed to IDL. This array should be of length argc and
should contain objects of type JIDLNumber, JIDLObject, JIDL String or JIDLATrray.

ar gpal - array of flags denoting whether each argv parameter that is of type array
should be convolved or not. For parameters that are not arrays, the value within the
array will always be 0.

Throws:

JIDLException - If IDL encounters an error.

destroyObject()
public void destroyQbject()
Destroys the underlying IDL object associated with the wrapper.

If the object being destroyed is the last object within an OPS process, the OPS
processis also destroyed.

Note that this does not destroy the actual wrapper object. Because the wrapper object
isaJavaobject, it follows all the Java reference counting/garbage collection schemes.
Once all references to the wrapper object are released from Java code and once the
Java Virtual Machine calls the garbage collector, the wrapper object may be deleted
from memory.

executeString(String)
public void executeString(java.lang. String sCm)
Execute the given command string in IDL.
Parameters:
sCnd - the single-line command to execute in IDL.
Throws:

JIDLEXxception - If IDL encounters an error.

getCookie()

public | ong get Cooki e()

Internal use.
getIDLODbjectClassName()

public java.lang. String getlDLObj ect d assName()
Retrieves the IDL object class nhame of the underlying IDL object.

IDL Connectivity Bridges JIDLObjectl

434 Appendix A: IDL Java Object API

Returns:

the IDL object class name
getIDLODbjectVariableName()

public java.l ang. String getl| DLObj ectVari abl eNane()

When the underlying IDL object was created in the IDL process, it was assigned a
variable name. This method retrieves that name.

Returns:

the variable name

getIDLVariable(String)
public java.l ang. Obj ect getlDLVariable(java.lang. String sVar)
Given avariable name, return the IDL variable.

Note that in the case of arrays, the array will ALWAY S be convolved when passed
between Javaand IDL.

Parameters:
sVar - The DL variable name
Returns:

an Object of type JDLNumber, JIDLString, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:

JIDLException - If IDL encounters an error.

getProcessName()

public java.l ang. String get ProcessName()

Returns the name of the process that contains the underlying IDL object. For an in-
process object, returns an empty string.

Returns:

process name. EMpty string if the processisin-process.

JIDLObjectl IDL Connectivity Bridges

Appendix A: IDL Java Object API 435

getProperty(String, int)

public java.l ang. Obj ect getProperty(java.lang. String
sProperty, int iPalFlag)

Call IDL getProperty method to get named property.
Parameters:
sProperty - the property name

i Pal Fl ag - aflag determining whether areturned array will be convolved or not. If
the returned value is not isignored.

Returns:

an Object of type JIDLNumber, JIDL String, JIDLObject or JIDLArray. The caller
must know the type of the Object being returned and cast it to its proper type. May
also return null.

Throws:
JIDLEXxception - If IDL encounters an error.
See Also:

JDLNumber, JIDLObjectl, JDLString, JIDLATrray,
JDLConst. PARMFLAG_CONVMAJIORITY,
JDLConst. PARMFLAG_NO_CONVMAJJORITY

initListeners()
public void initListeners()

Initialize any listeners.

This method is always called by the JIDL Object and JIDL Canvas createObject
methods.

The method may be overridden by sub-classes to initialize a different set of listeners
(or none at al).

iIsObjectCreated|()

publ i ¢ bool ean i sCbj ect Created()
Determine if object has been created successfully.

IDL Connectivity Bridges JIDLObjectl

436 Appendix A: IDL Java Object API

Returns:

t rue if object created successfully, or f al se if object not created or creation was
unsuccessful.

iIsObjectDisplayable()
publ i ¢ bool ean i sCbject Di spl ayabl e()
removelDLNotifyListener(JIDLNotifyListener)

public void
renovel DLNot i fyLi stener(comidl.javaidl.JlI DLNotifyListener
|istener)

Removes the specified IDL notify listener so it no longer receives IDL notifications.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

|'i st ener -thelistener
removelDLOutputListener(JIDLOutputListener)

public void
renovel DLCQut put Li st ener (com i dl . j avai dl . JI DLQut put Li st ener
|istener)

Removes the specified IDL output listener on this object.

Note that registering/unregistering for events should happen in the initListeners
method or AFTER the createObject method.

Parameters:

|'i st ener -thelistener
setIDLVariable(String, Object)

public void setlDLVariabl e(java.lang. String sVvar,
j ava. |l ang. Qbj ect obj)

Set/Create an IDL variable of the given name and value.

Note that in the case of arrays, the array will ALWAY S be convolved when passed
between Javaand IDL.

JIDLObjectl IDL Connectivity Bridges

Appendix A: IDL Java Object API 437

Parameters:
sVar -thelDL variable name

obj - object to be passed to IDL. Should be an object of type J DL Number,
JDLObject, JDLString or JIDLATray.

Throws:

JIDLException - If IDL encounters an error.

setProcessName(String)
public void setProcessNanme(j ava.l ang. Stri ng process)
Set the process name that the object will be created in.

The process name may only be set before createObject is called. If called after the
object has been created, this method call does nothing.

Parameters:

pr ocess - Process name. Empty String means create in same process (in-process).
setProperty(String, Object, int)

public void setProperty(java.lang. String sProperty,
java.l ang. Qbj ect obj, int iPalFlag)

Call IDL setProperty method to set named property.

The iPalFlag parameter is a set of flags that are or-ed together. Currently this
parameter is only used to specify whether aJJIDLArray being passed into IDL is
convolved or not. For arrays argpal should be set to either

JDLConst. PARMFLAG_CONVMAJORITY or
JDLConst.PARMFLAG_NO_CONVMAUJORITY.

Parameters:
sProperty - the property name

obj - object to be passed to IDL. Should be an object of type J DL Number,
JDLObject, IDLString or JIDL Object.

i Pal FI ag - flag denoting whether the passed in parameter is convolved or not.
Note: setProperty does not allow obj to be modified by IDL

Throws:

JIDLException - If IDL encounters an error.

IDL Connectivity Bridges JIDLObjectl

438 Appendix A: IDL Java Object API

See Also:

JIDLNumber, JIDLObject, JIDLString, JIDLATrray,
JDLConst. PARMFLAG _CONVMAJORITY,
JIDLConst. PARMFLAG _NO_CONVMAJORITY

JIDLObjectl IDL Connectivity Bridges

Appendix A: IDL Java Object API 439

JIDLOutputListener

Declaration
public interface JlDLQut putListener
Description

The listener interface for receiving output events from IDL.

Both drawable (J DL Canvas) and non-drawable (JIDL Object) wrapper objects may
be listened to. However by default, JIDL Object and JIDL Canvas objects do NOT
listen to their output events.

The classthat isinterested in receiving IDL output events on a particular object
implements thisinterface. The listener object created from that classis registered
with the JIDLObjectl using the addIDL OutputListener method. The listener is
unregistered with the removel DL OutputL istener.

See Also:

JIDL Canvas, JIDLObject, JDL Objectl

Member Summary
Methods
voi d | DLout put (JI DLObj ectl obj, java.lang. String s)
An IDL output has occurred
Methods

IDLoutput(JIDLObjectl, String)

public void |IDLoutput(comidl.javaidl.JIDLChjectl obj,
java.lang. String s)

An IDL output has occurred
Parameters:

obj - The JDLObjectl in which the event occurred.

IDL Connectivity Bridges JIDLOutputListener

440 Appendix A: IDL Java Object API

s - The output string

JIDLOutputListener IDL Connectivity Bridges

Appendix A: IDL Java Object API

JIDLShort

Declaration

public class JIDLShort inplenments JI DLNunber,
java.io. Serializable

j ava. |l ang. Qbj ect

+--comidl.javaidl.Jl DLShort

All Implemented Interfaces:

JI DLNunber, java.io. Serializable

441

Description
The JIDL Short class wraps a short as a mutabl e object usable by the Java-IDL Export
bridge.
Member Summary
Constructors
JI DLShort (JI DLNunber val ue)
Construct a wrapper object.
JI DLShort (short val ue)
Construct awrapper object.
Methods
bool ean bool eanVal ue()
Return the value of the wrapped primitive.
byt e byt eVal ue()
Return the value of the wrapped primitive
char char Val ue()
Return the value of the wrapped primitive
doubl e doubl eVal ue()
Return the value of the wrapped primitive
fl oat fl oat Val ue()
Return the value of the wrapped primitive

IDL Connectivity Bridges

JIDLShort

442

Appendix A: IDL Java Object API

Member Summary

i nt i nt Val ue()
Return the value of the wrapped primitive

| ong | ongVal ue()
Return the value of the wrapped primitive

voi d set Val ue(JI DLNunmber val ue)
Change the value of the wrapper object

voi d set Val ue(short val ue)
Change the value of the wrapper object

short short Val ue()
Return the value of the wrapped primitive

java.lang. String toString()

Inherited Member Summary

Methods inherited from class Obj ect

equal s(Obj ect), getd ass(), hashCode(), notify(),
noti fyAll (), wait(long, int), wait(long, int), wait(long,
int)

Constructors

JIDLShort(JIDLNumber)

public JIDLShort(comidl.javaidl.Jl DLNumber val ue)
Construct a wrapper object.
Parameters:

val ue - JIDLNumber to wrap for usein the export bridge

JIDLShort(short)

JIDLShort

public JIDLShort (short val ue)

Construct a wrapper object.

IDL Connectivity Bridges

Appendix A: IDL Java Object API 443

Parameters:

val ue - valueto wrap for use in the export bridge
Methods

booleanValue()

publ i ¢ bool ean bool eanVal ue()

Return the value of the wrapped primitive.
Specified By:

booleanValue in interface JIDL Number
Returns:

t r ue if non-zero, f al se otherwise

byteValue()

public byte byteVal ue()
Return the value of the wrapped primitive

Specified By:
byteValue in interface JIDL Number
Returns:

value that is wrapped by this object
charValue()

publi ¢ char charVal ue()
Return the value of the wrapped primitive
Specified By:
charValue in interface JIDL Number
Returns:

value that is wrapped by this object
doubleValue()

publ i ¢ doubl e doubl eVal ue()

IDL Connectivity Bridges JIDLShort

444

Return the value of the wrapped primitive
Specified By:

doubleVauein interface JIDL Number
Returns:

value that is wrapped by this object

floatValue()

public float floatVal ue()
Return the value of the wrapped primitive
Specified By:
floatValue in interface JIDLNumber
Returns:

value that is wrapped by this object

intValue()

public int intValue()
Return the value of the wrapped primitive

Specified By:
intValue in interface JIDL Number
Returns:

value that is wrapped by this object

longValue()

JIDLShort

public I ong | ongVal ue()
Return the value of the wrapped primitive
Specified By:
longValue in interface JIDL Number
Returns:

value that is wrapped by this object

Appendix A: IDL Java Object API

IDL Connectivity Bridges

Appendix A: IDL Java Object API 445

setValue(JIDLNumber)
public void setValue(comidl.javaidl.Jl DLNunber val ue)

Change the value of the wrapper object

Specified By:

setValuein interface JIDL Number

Parameters:

val ue - JIDLNumber to wrap for use in the export bridge
setValue(short)

public void setVal ue(short val ue)

Change the value of the wrapper object

Parameters:

val ue - primitive value to wrap for use in the export bridge
shortValue()

public short short Val ue()
Return the value of the wrapped primitive

Specified By:
shortValue in interface J DL Number
Returns:
value that is wrapped by this object
toString()
public java.lang. String toString()
Overrides:

toString inclassbj ect

IDL Connectivity Bridges JIDLShort

446

JIDLString

Declaration

Appendix A: IDL Java Object API

public class JIDLString inplenments java.io. Serializable

j ava. |l ang. Qbj ect

+--comidl.javaidl.JIDLString

All Implemented Interfaces:

java.io. Serializable

Description
The JDL String class wraps a String as a mutable object usable by the Java-IDL
Export bridge.
Member Summary
Constructors
JIDLString(JIDLString val ue)
Construct a wrapper object.
JIDLString(java.lang. String val ue)
Construct a wrapper object.
Methods
voi d set Val ue(JI DLString val ue)
Change the value of the wrapper object
voi d set Val ue(j ava. |l ang. String val ue)
Change the value of the wrapper object
java.lang. String | stringVal ue()
Return the value of the wrapped primitive
java.lang. String | toString()

JIDLString

IDL Connectivity Bridges

Appendix A: IDL Java Object API 447

Inherited Member Summary

Methodsinherited from class Obj ect

equal s(oj ect), getd ass(), hashCode(), notify(),
noti fyAll (), wait(long, int), wait(long, int), wait(long,
int)

Constructors
JIDLString(JIDLString)

public JIDLString(comidl.javaidl.JIDLString val ue)
Construct awrapper object.
Parameters:

val ue - value to wrap for use in the export bridge
JIDLString(String)

public JIDLString(java.lang. String val ue)
Construct awrapper object.
Parameters:

val ue - value to wrap for use in the export bridge

Methods

setValue(JIDLString)

public void setValue(comidl.javaidl.JIDLString val ue)

Change the value of the wrapper object

Parameters:

val ue - primitive value to wrap for use in the export bridge
setValue(String)

public void setVal ue(java.l ang. Stri ng val ue)

Change the value of the wrapper object

IDL Connectivity Bridges JIDLString

448 Appendix A: IDL Java Object API

Parameters:

val ue - primitive value to wrap for use in the export bridge
stringValue()

public java.lang. String stringVal ue()
Return the value of the wrapped primitive
Returns:

value that is wrapped by this object
toString()

public java.lang. String toString()
Overrides:

t oSt ri ng inclass hj ect

JIDLString

IDL Connectivity Bridges

Appendix B

COM Obiject Creation

Thefollowing topicsin this appendix show how to create a custom IDL wrapper object (initialized
with and without parameters) from several COM programming languages.

SampleIDL Object 450 C#CodeSample.................... 457
Visua Basic .NET Code Sample........ 453 Visua Basic 6 Code Sample 459
C++ClientCodeSample 455

IDL Connectivity Bridges 449

450 Appendix B: COM Object Creation

Sample IDL Object

The COM CreateObject method creates an instance of an underlying IDL object and
calsitsInit method with any specified parameters (see “ CreateObject” on page 186
for details). Through this object instance, you have access to the properties and
methods of the object as well as the underlying IDL process.

The following samplesrely upon an IDL object named i dI exf oo__defi ne. pro
containing the following code:

; The Init nethod expects three paraneters:
; astring, a 32-bit long, and an array which has
;7 2 rows & 3 colums, containing 32-bit |ong val ues.
The ::1nit nmethod can also be called without any paraneters.

FUNCTI ON i dl exfoo::Init, parnStr, parnVal, parmArr, _EXTRA=e

IF (N_ELEMENTS(parntStr) EQ 1) THEN BEG N
IF (Sl ZE(parntStr,/type) NE 7) THEN BEG N
PRI NT, 'IDLexFoo::Init, parnStr is not a STRING
HELP, parnStr
RETURN, O
ENDI F
ENDI F

I F (N_ELEMENTS(parmval) EQ 1) THEN BEG N
IF ((SIZE(parnVval,/type) NE 3)) THEN BEG N
PRI NT, '1DLexFoo::Init, parnVal is not a LONG
HELP, par nVal
RETURN, O
ENDI F
ENDI F

nEl ms = N_ELEMENTS(par mArr)
IF (nElns GT 0) THEN BEG N
IF ((nElms NE 6) OR (size(parnmArr,/type) NE 3)) THEN BEG N
PRI NT, 'IDLexFoo::Init, parmArr is not a ARR(3,2) of

LONG '
HELP, parmArr
RETURN, O
ENDI F
ENDI F
RETURN, 1
END

Sample IDL Object IDL Connectivity Bridges

Appendix B: COM Object Creation 451

; oject definition.
PRO i dl exfoo__defi ne
; Create [col, row] 32-bit long array.
initArr = LONARR(3, 2)
struct = {idlexfoo, $
parnStr: '', $
parnval : OL, $
parmArr: initArr $

}
END

Export the Sample IDL Object

You will need to create the necessary wrapper object files by using the Export Bridge
Assistant to generate them. Once you have created the object definition file,
i dl exfoo__defi ne. pro, complete the following steps:

1. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

2. Select to create a COM export object by selecting File — New Project —
COM and browseto select thei dl exf oo__defi ne. pro file. Click Open to
load the file into the Export Assistant.

Note
Export Bridge Assistant details are available in Chapter 7, “Using the Export
Bridge Assistant”. Refer to that section if you need more information about
the following steps.

3. Thetop-level project entry in the left tree panel is selected by default. Thereis
no need to modify the default properties shown in the right-hand property
panel, but you can enter different values if desired. There are no other
parameters that need to be defined for this object.

IDL Connectivity Bridges Sample IDL Object

452 Appendix B: COM Object Creation

Tree View Item Parameter Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

» Output classname
* Process name
» Output directory

helloworldex Drawable abject equals False

Table B-4: Example Export Object Parameters

4. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

5. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. For a nondrawable object, .t | b
and .dl | files (named based on the object name) are created in the Output
directory.

6. Register the.dl | usingregsvr32 idl exfoo. dl|.See“COM Registration
Requirements’ on page 136 for detailsif needed.

See the language-specific section for information on how to create this object in your
application:

e “Visual Basic .NET Code Sample” on page 453
e “C++ Client Code Sample”’ on page 455

e “C# Code Sample” on page 457

e “Visua Basic 6 Code Sample” on page 459

Sample IDL Object IDL Connectivity Bridges

Appendix B: COM Object Creation 453

Visual Basic .NET Code Sample

Within Visua Studio .NET, select Project — Add Reference.... Thisbringsup a
dialog. Select the COM tab, then Browse, and change the path to the
i dl exf oo.dl | . Thisimports the object reference into the project.

Within the project that will use the wrapper object, include the following line at the
top of the form:

I mports | DLexFoolLib
Initiation Without Parameters in Visual Basic .NET

Use the following code to initialize the object with no parameters.
Private Sub Buttonl Cick(...)

Di m oFoo As New | DLexFood ass()

Try
oFoo0. Createhj ect (0, 0, 0)

Catch ex As Exception
Debug. Wi t eLi ne(oFoo. Get LastError())
Ret urn

End Try

use object here...

End Sub
Initiation with Parameters in Visual Basic .NET

Use the following code to initialize the object with its three parameters (a string, a
32-bit long value, and an array that has two rows and three columns, containing 32-
bit long values).

Inside the Public Class definition for the form and before any subroutines, you must
add the following two lines:

Const PARMFLAG CONST As Integer = &H1
Const PARMFLAG CONV_MAJORITY As | nteger = &H4000

Then create the object within your program:
Private Sub Buttonl Cick(...)

Di m oFoo As New | DLexFood ass

IDL Connectivity Bridges Visual Basic .NET Code Sample

454 Appendix B: COM Object Creation

DimparnStr As String = "I ama string paraneter”
DimparnVal As Int32 = 24
DimparnmArr As Int32(,) = {{10, 11, 12}, {20, 21, 22}}

Dimargc As Int32 = 3

Dimargval As bject() = {parntStr, parnVal, parnArr}

Dimargpal As Int32() = {PARMFLAG CONST, PARMFLAG CONST,
(PARMFLAG_CONST + PARMFLAG CONV_MAJORI TY) }

Try
oFoo. Creat eCbj ect (argc, argval, argpal)
Catch ex As Exception
Debug. Wi t eLi ne(oFoo. Get LastError())
Ret urn
End Try

use object here...

End Sub

Visual Basic .NET Code Sample IDL Connectivity Bridges

Appendix B: COM Object Creation 455

C++ Client Code Sample

The C++ project must somewhere include the following line, in order to pull in the
CoClass and Interface definitions for the wrapper object:

#i nmport "1 DLexFoo.tlb" no_nanmespace no_i npl enentation \
raw_i nterfaces_only named_gui ds

For details about the object parameters, see“ Sample IDL Object” on page 450.
Initiation Without Parameters in C++

Use the following code to initialize the object with no parameters.
CConPtr<I | DLexFoo> spFoo;

i f (FAILED(spFoo. CoCreat el nst ance(__uui dof (I DLexFoo)) || !spFoo)

)
return E_FAIL;

CConVari ant vt NULL(O);
HRESULT hr = spFoo->Createbj ect (0, vt NULL, vt NULL) ;
if (FAILED(hr))
{
CConBSTR bstrErr;
spFoo->Cet Last Error (&bstrErr);
return E_FAIL;

}
Initiation with Parameters in C++

Use the following code to initialize the object with its three parameters (a string, a
32-bit long value, and an array that has two rows and three columns, containing 32-
bit long values).

CConPtr<I | DLexFoo> spFoo;

i f (FAILED(spFoo. CoCreat el nst ance(__uui dof (1 DLexFoo)) || !spFoo)
)

return E_FAIL;

CConSaf eArrayBound bound[2] ;

bound[0] . Set Lower Bound(0); bound[0]. Set Count(2); // two rows
bound[1] . Set Lower Bound(0); bound[1] . Set Count(3); // three cols

CConaf eAr r ay<VARI ANT> par mAr r (bound, 2) ;

IDL Connectivity Bridges C++ Client Code Sample

456 Appendix B: COM Object Creation

| ong ndx[2] ;
long IData[2][3] ={ {10, 11, 12}, {20, 21, 22} };
for (int i =0; i <2; i++) { Il row
for (int j =0; j <3; j++) { // col
ndx[0] = i; ndx[1] =j;

par mArr. Mul ti Di nSet At (ndx, CConVariant(lDatal[i][j]));

}

CConBSTR parntr
CComvar i ant par nval

"I ama string paraneter";
(1 ong) 24;

CConSaf eAr r ay<VARI ANT> ar gval (3);
CConfaf eArr ay<l ong> argpal (3);

argval [0] = parnstr; argpal [0] = | DLBM__PARMFLAG_CONST;
argval [1] = parnval ; argpal [1] = | DLBM__PARMFLAG_CONST;
argval [2] = parmArr; argpal [2] =

| DLBM._PARMFLAG _CONST | | DLBM._PARMFLAG CONVMAJCORI TY;

|l ong argc = 3;
CComvari ant vargval
CComvar i ant var gpal

= argval ;
= argpal ;
HRESULT hr = spFoo->Creat eQbj ect (argc, vargval , vargpal);
if (FAILED(hr))
{
CComBSTR bstrErr;
spFoo- >Get Last Error (&bstrErr);
return E_FAIL;

}

C++ Client Code Sample IDL Connectivity Bridges

Appendix B: COM Object Creation 457

C# Code Sample

Within Visua Studio .NET, in the Solution Explorer window, underneath the project
that will use the wrapper object, right-click on the Referencesitem, then select Add
Reference.... Thisbringsup adialog. Select the COM tab, then Browse, and change
the path to the wrapper .dl | . Thisimports the object reference into the project.

Then, within the project that will use the wrapper object, include the following line at
the top, outside of the namespace for the class:

usi ng | DLexFoolLi b;
Initiation Without Parameters in C#

Use the following code to initialize the object with no parameters.

private void buttonl _dick(...)
{

| DLexFooCl ass oFoo = new | DLexFood ass();

try {
oFoo. CreateChject (0, 0, 0);

}

catch {
Debug. Wit eLi ne(oFoo. GetLastError());
return;

}

/1 Use object here...
}

Initiation with Parameters in C#

Use the following code to initialize the object with its three parameters (a string, a
32-bit long value, and an array that has two rows and three columns, containing 32-
bit long values).

private void buttonl_dick(...)
{
const int PARMFLAG CONST
const int PARMFLAG CONV_MAJORI TY

0x0001;
0x4000;

| DLexFooCl ass oFoo = new | DLexFooCd ass();

string parnttr
int par nval

"I ama string paraneter"”;
24;

IDL Connectivity Bridges C# Code Sample

458

C# Code Sample

Appendix B: COM Object Creation

int[,] parmArr {{10, 11, 12}, {20, 21, 22}};

int argc = 3;
object[] argval = {parnStr, parnmval, parnArr};
int[] argpal = { PARMFLAG CONST, PARMFLAG CONST,
PARMFLAG CONST | PARMFLAG CONV_NAJORI TY};
try {
oFoo. Creat evj ect (argc, argval, argpal);
}
catch {
Debug. Wit eLi ne(oFoo. GetLastError());
return;
}

/1 Use object here...

IDL Connectivity Bridges

Appendix B: COM Object Creation 459

Visual Basic 6 Code Sample

Within Visual Basic 6, select Project — Components, then Browse for the. dI | of
the wrapper object in order to include the objects definition in the project.

For details about the object parameters, see “ Sample IDL Object” on page 450.
Initiation Without Parameters in Visual Basic 6
Use the following code to initialize the object with no parameters.

Private Sub MyRouti ne

Di m oFoo As | DLexFoo
Set oFoo = New | DLexFoo

On Error GoTo ErrorHandl er
oFoo. Createhject 0, 0, O
use obj ect here...
Ret urn
Error Handl er:
If Not oFoo |Is Nothing Then
Debug. Pri nt oFoo. Get Last Error

End | f

End Sub
Initiation with Parameters in Visual Basic 6

Use the following code to initialize the object with its three parameters (a string, a
32-bit long value, and an array which has two rows and three columns, containing 32-
bit long values).

Const PARMFLAG CONST As Integer = &H1
Const PARMFLAG CONV_MAJORITY As | nteger = &H4000

Private Sub MyRouti ne
Di m oFoo As | DLexFoo
DimparnStr As String
Di m parnVal As Long
DimparmArr (1, 2) As Long

Dimargc As Long

IDL Connectivity Bridges Visual Basic 6 Code Sample

460 Appendix B: COM Object Creation

Dimargv(2) As Variant
Di m argpal (2) As Long

parnStr = "l ama string paraneter"”
parmval = 24

parmArr (0, 0) = 10: parmArr(0, 1) = 11: parnmArr(0, 2) = 12
parmArr (1, 0) = 20: parmArr(1, 1) = 21: parmArr(1l, 2) = 22
argc = 3

argv(0) = parnttr: argpal (0) = PARMFLAG _CONST

argv(1l) = parnval: argpal (1) = PARMFLAG CONST

argv(2) = parnmArr: argpal (2)
PARMFLAG _CONV_MAJORI TY

PARMFLAG CONST + _

Set oFoo = New | DLexFoo
On Error GoTo ErrorHandl er
oFoo. Creat ehj ect argc, argv, argpal
use obj ect here...
Ret urn
Er r or Handl er:
If Not oFoo Is Nothing Then
Debug. Print oFoo. Get Last Error
End |f

End Sub

Visual Basic 6 Code Sample IDL Connectivity Bridges

Appendix C
Java Object Creation

Thefollowing topicsin this appendix show how to create a custom IDL wrapper object (initialized
with and without parameters) in Java:

SampleIDL Object 462 Java Object Initiation with Parameters . .. 467
Java Object Initiation Without Parameters 465

IDL Connectivity Bridges 461

462

Sample IDL Object

Appendix C: Java Object Creation

The Java createObject method creates an instance of an underlying IDL object and
calsitsInit method with any specified parameters (see “ createObject” on page 210
for details). Through this object instance, you have access to the properties and
methods of the object as well as the underlying IDL process.

The following samplesrely upon an IDL object contained in file named
i dl exfoo__define. pro. Thisfile must bein the IDL path and needs to contain

the following code:

; The Init nethod expects three paraneters:

; a string, a 32-bit long, and an array whi ch has

2 rows & 3 columms, containing 32-bit |ong val ues.
The ::1nit method can al so be called wi thout any paraneters.

FUNCTI ON i dl exfoo::Init, parnStr, parnVal, parmArr, _EXTRA=e

IF (N_ELEMENTS(parnfStr) EQ 1) THEN BEG N
IF (Sl ZE(parnstr,/type) NE 7) THEN BEG N
PRI NT, 'IDLexFoo::Init, parnStr is not a STRING
HELP, parnttr
RETURN, O
ENDI F
ENDI F

I F (N_ELEMENTS(parnval) EQ 1) THEN BEG N
IF ((SIZE(parmval ,/type) NE 3)) THEN BEG N
PRI NT, '1DLexFoo::Init, parnVal is not a LONG
HELP, par nval
RETURN, O
ENDI F
ENDI F

nEl ms = N_ELEMENTS(par mArr)
IF (nElns GT 0) THEN BEG N
IF ((nElms NE 6) OR (size(parnmArr,/type) NE 3)) THEN BEG N
PRI NT, 'I1DLexFoo::Init, parmArr is not a ARR(3,2) ' $
+ 'of LONG'
HELP, parnmArr
RETURN, O
ENDI F
ENDI F

RETURN, 1

END

Sample IDL Object

IDL Connectivity Bridges

Appendix C: Java Object Creation 463

; oject definition.
PRO i dl exfoo__defi ne
; Create [col, row] 32-bit long array.
initArr = LONARR(3, 2)
struct = {idlexfoo, $
parnStr: '', $
parnval : OL, $
parmArr: initArr $

}
END

Export the Sample IDL Object

You will need to create the necessary wrapper object files by using the Export Bridge
Assistant to generate them. Once you have created the object definition file,
i dl exfoo__defi ne. pro, complete the following steps:

1. Open the Export Bridge Assistant by entering IDLEXBR_ASSISTANT at the
command line.

2. Select to create a Java export object by selecting File — New Project — Java
and browse to select thei dl exf oo__defi ne. pro file. Click Open to load
the file into the Export Assistant.

Note
Export Bridge Assistant details are available in Chapter 7, “Using the Export
Bridge Assistant”. Refer to that section if you need more information about
the following steps.

3. Thetop-level project entry in the left tree panel is selected by default. Thereis
no need to modify the default properties shown in the right-hand property
panel, but you can enter different values if desired. There are no other
parameters that need to be defined for this object.

IDL Connectivity Bridges Sample IDL Object

464 Appendix C: Java Object Creation

Tree View Item Parameter Configuration

IDL Export Bridge Project Accept the default value or make
changes as desired:

» Output classname
* Processname

» Output directory
» Package name

idlexfoo Drawable object equals False

Table C-1: Example Export Object Parameters
4. Savethe project by selecting File — Save project. Accept the default name
and location or make changes as desired.

5. Build the export object by selecting Build — Build object. The Build log
panel shows the results of the build process. A subdirectory, namedi dl exf oo
(based on the object name), containsthe .j ava and .cl ass files, andis
located in the Output directory.

See the following for information on how to create this object in your application:
e “JavaObject Initiation Without Parameters’” on page 465
e “JavaObject Initiation with Parameters’ on page 467

Note on Running the Java Examples

Examplesin this appendix provide Windows-style compilej avac (compile) and
java (run) commands. If you are running on a platform other than Windows, use
your platform’s path and directory separators and see “ Java Requirements’ on
page 136 for information about the br i dge_set up file, which sets additional
information.

Sample IDL Object IDL Connectivity Bridges

Appendix C: Java Object Creation

Java Object Initiation Without Parameters

465

Toinitialize an instance of the newly created wrapper object (based on the IDL object
described in “ Sample IDL Object” on page 462) using createObject, complete the
following steps:

1. CreateaJavafilenamedi dl exf oo_exanpl e. j ava and saveit in the

Export directory created by the Assistant. Include the following lines of code

inthefile:

/1 Reference the default

package i dl exf oo;

/1l Reference the javaidl export bridge classes.
import comidl.javaidl.*;

[/ Create main class, subclassing from object created by

/1 Bridge Assistant.

/I menber variable of the object.
public class idlexfoo_exanpl e extends idl exfoo
i mpl ement s JI DLQut put Li st ener

{

//Create a variable referencing the exported object
private idl exfoo fooQbj;

/'l Constructor.
public idl exfoo_exanple() {

}

1

/! Create the wapper object
fooChj = new idl exfoo();

/1 Add output listener to access | DL output.
f ooChj . addl DLQut put Li st ener (thi s);

// Create the underlying IDL object and call

/1 its ::lnit method with paraneters
fooQhj.createOhject();

fooQhj . executeString("PRINT, 'Created object'");

| mpl erent JI DLCut put Li st ener

You can either subclass or create a

package generated by the Assistant.

public void |DLoutput(JlIDLObjectl obj, String sMessage) {

}

Systemout.println("IDL: "+sMessage);

//1nstantiate a menber of the class.
public static void main(String[] argv) {

IDL Connectivity Bridges

Java Obiject Initiation Without Parameters

466 Appendix C: Java Object Creation

i dl exf oo_exanpl e exanpl ethj =
new i dl exf oo_exanpl e();

}

2. Open the Windows Command window by selecting Start — Run and enter
cmd in the textbox.

3. Usethe cd command to change to the directory containing thei dl exf oo
directory.

4. Referencethe classpath of j avai dl b. j ar inthe compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing <RSI _DI R> with the IDL installation directory:

javac -classpath
".; <RSI _DI R>\resource\bridges\export\java\javaidlb.jar"
i dl exfoo\idl exfoo_exanpl e.java

java -cl asspath
".; <RSI _DI R>\resource\bridges\export\java\javaidlb.jar"
i dl exfoo.idl exfoo_exanpl e

Tip
See “Note on Running the Java Examples’ on page 464 for information on non-
Windows-style compile and execution commands.

After compiling and running the project, the output message will appear in the
command window.

Java Object Initiation Without Parameters IDL Connectivity Bridges

Appendix C: Java Object Creation 467

Java Object Initiation with Parameters

Use the following code to initialize the newly created Java wrapper object (based on
the IDL object described in “ Sample IDL Object” on page 462) with its three
parameters:

e Asdtring
e A 32-bit long value
* Anarray that has two rows and three columns, containing 32-bit long values

See createObject for more information about object parameters. See Appendix A,
“IDL Java Object API” for information on JIDL* objects.

1. CreateaJavafilenamedi dl exf oo_exanpl e. j ava and saveit in the
Export directory created by the Assistant. Include the following lines of code
inthefile:

/1 Reference the default package generated by the Assistant.
package i dl exf oo;

/1l Reference the javaidl export bridge classes.
import comidl.javaidl.*;

[/l Create main class, subclassing from object created by
/1 Bridge Assistant. You can either subclass or create a
/I menber variable of the object.
public class idl exfoo_exanpl e extends idl exfoo
i mpl ement s JI DLQut put Li st ener
{
/Il Create a variable referencing the exported object
private idl exfoo fooQbj;

/1 Constructor.
public idl exfoo_exanple() {

/1l These are the paraneters we want to pass to
/1 the ::lnit method

String str ="l ama string paraneter";

int var = 24;

int[][] array = {{10, 11, 12}, {20, 21, 22}};

/1 Wap the Java types using Export Bridge data types
JIDLString parnStr = new JIDLString(str);

JI DLI nt eger par nvar new JI DLI nt eger (var);

JI DLArray par mArray new JI DLArray(array);

IDL Connectivity Bridges Java Object Initiation with Parameters

468 Appendix C: Java Object Creation

/1 Create the wapper object
fooChj = new idl exfoo();

/1 Set up paraneters to pass to createject
final int ARGC = 3;

oject[] argv = new Obj ect[ARCC] ;

int[] argp = new int[ARG ;

/1 NOTE: Jl DLConst.PARMFLAG CONST i ndi cat es
/1l "in-only" paraneter

argv[0] = parnftr;

argp[0] = JI DLConst. PARMFLAG CONST; //
argv[1l] = parnVar;

argp[1] = JI DLConst. PARMFLAG CONST;
argv[2] = parnArray,;

argp[2] = JI DLConst. PARMFLAG CONST;

// Add output listener to access |IDL output.
f ooChj . addl DLQut put Li st ener (thi s);

/Il Create the underlying IDL object and call

/1l its ::lnit nethod with paraneters

f oobj . creat eObj ect (ARGC, argv, argp);

fooQhj . executeString("PRINT, 'Created object'");

}

/1 inplenent JIDLQutputListener
public void I DLoutput(JIDLObjectl obj, String sMessage) {
Systemout.println("IDL: "+sMessage);

}

/llnstantiate a nmenber of the class.
public static void main(String[] argv) {
i dl exf oo_exanpl e exanpl ethj =
new i dl exf oo_exanpl e();

}

2. Open the Windows Command window by selecting Start — Run and enter
cnd in the textbox.

3. Usethe cd command to change to the directory containing thei dl exf oo
directory.

Java Object Initiation with Parameters IDL Connectivity Bridges

Appendix C: Java Object Creation 469

4. Referencetheclasspath of j avai dl b. j ar inthe compile statement. Enter the
following two commands (as single lines) to compile and execute the program,
replacing <RSI _DI R> with the IDL installation directory:

javac -classpath
".; <RSI _DI R>\resource\bridges\export\java\javaidlb.jar"
i dl exfoo\idl exfoo_exanpl e.java

java -cl asspath
".; <RSI _DI R>\resource\bridges\export\java\javaidlb.jar"
i dl exfoo.idl exfoo_exanpl e

Tip
See “Note on Running the Java Examples’ on page 464 for information on non-
Windows-style compile and execution commands.

After compiling and running the project, the output message will appear in the
command window.

IDL Connectivity Bridges Java Object Initiation with Parameters

470 Appendix C: Java Object Creation

Java Object Initiation with Parameters IDL Connectivity Bridges

Appendix D

The IDLDrawWidget
ActiveX Control

This chapter discusses the following topics:

OVEIVIEW .ot o e e 472

Creating an Interface and Handling Events . . .
474

Working with IDL Procedures.......... 480
Advanced Examples 483
Copying and Printing IDL Graphics 484

IDL Connectivity Bridges

XLoadCT Functiondity Using Visual Basic . 488
XPalette Functionality Using Visual Basic 490

Integrating Object GraphicsUsingVB .. 491
Sharing a Grid Control Array with IDL .. 492
Handling Events within Visua Basic 494
Distributing Your ActiveX Application .. 496

471

472

Appendix D: The IDLDrawWidget ActiveX Control

Overview

Overview

The Microsoft Windows version of IDL includes an ActiveX control that provides a
powerful way to integrate all the data analysis and visualization features of IDL with
other programming languages that support ActiveX controls. ActiveX is aset of
technologies that enables software componentsto interact, regardless of the language
in which they were written. This makes it possible, for example, to design a software
interface with Microsoft Visual Basic and have IDL respond to the events it
generates. The major features of the IDL ActiveX control include the following:

e« ThelDL ActiveX control makesit possibleto display IDL direct and object
graphics within an OLE container that supports ActiveX controls

e ThelDL ActiveX control can respond to events, regardless of whether they are
generated by an external program or IDL itself

e ThelDL ActiveX control greatly simplifiesthe process of moving datato and
from IDL and an external program

« Theinterfaceto the IDL ActiveX control appears native to the external
application

Other issues to note regarding the ActiveX control are:

e ThelDL ActiveX control isintended primarily for usein applications
developed with Visual Basic 5.0 or greater. The control can be included in any
programming language designed to use ActiveX controls (e.g. Visual C++ or
Delphi). Users who intend to utilize the IDL ActiveX control in Visual C++
applications should be thoroughly familiar with Microsoft Foundation Classes
and ActiveX programming. The IDL ActiveX control uses Visual Basic-style
data types to exchange data between a Visual Basic application and IDL. A
Visual C++ programmer will need to use OLE’s VARI ANT and SAFEARRAY
types. A discussion of how to usethe IDL ActiveX control with these
languages is beyond the scope of this manual.

e ThelDL ActiveX control does not support any non-blocking IDL widgets.
When you call awidget from an ActiveX Control, you will not have accessto
the active command line and control will not pass back to the calling program
until the blocking has been removed (the widget has been dismissed). You can,
however, recreate the functionality of awidget using the given functionality.
For an example, see “XLoadCT Functionality Using Visual Basic” on
page 488.

IDL Connectivity Bridges

Appendix D: The IDLDrawWidget ActiveX Control 473

The ActiveX interfaceto IDL consists of asingle control called | DL DrawWidget.
When this control isincluded in a project, it exposes the features of IDL through its
properties and methods. The IDL DrawWidget can also trigger events. The
properties and methods of the IDL DrawWidget are listed in Appendix E,
“IDLDrawWidget Control Reference”.

In this chapter, you will be guided through a series of examples designed to
demonstrate techniques for integrating IDL with programs written in Microsoft
Visua Basic. These technigues begin with writing a simple application that shows
how IDL can respond to Visual Basic events and draw graphicsin aVisual Basic
window.

A Note about Versions of the IDL ActiveX Control

Periodically, RSI releases a new version of the IDLDrawX ActiveX control. Older
versions of the control will continue to work as they always have, but the new
versions may include new features or other enhancements.

Why Are New Versions of the Control Created?

One of the features of COM isthat interfaces are immutable. That isto say that when
you create an interface, you “contractually” agree that the interface won’t change.
Changes to the way the control interacts with other components require that a new
interface, and thus a new version of the control, must be created. Since the IDL
ActiveX control isa COM object it is bound by this agreement. When RSI makes
improvements to the ActiveX control interface by adding new methods and
properties, we release a new ActiveX control with the new interface.

What Must You Change to Take Advantage of a New Control?

If you are a Visual Basic user, you need to add the new version of the control to your
project and remove the old versions. For example, if you are upgrading to the
“IDLDrawX3 ActiveX Control Module” included with IDL version 5.6 and later,
you would add this control to your project and remove the “IDLDrawX ActiveX
Control Module” or “IDLDrawX2 ActiveX Control Module” from your project. The
source code need not change.

What About Previous ActiveX Controls?

While previous versions of the IDLDrawX control will continue to work with new
versions of IDL, they are no longer supported and will not be shipped with IDL. It is
recommended that you upgrade to the new version to take advantage of new features
and bug fixes.

IDL Connectivity Bridges Overview

474 Appendix D: The IDLDrawWidget ActiveX Control

Creating an Interface and Handling Events

The goal of thisfirst exampleisvery simple: to create a user interface in Microsoft
Visua Basic and have IDL respond to events and display an image. The following
figure shows what the finished project looks like when it runs. The Visual Basic
source code used to create the example is shown in the following figure:

. IDL OCX Control: Simple Example [O] X]

% Compiled module: DIST.
‘ 40 4 1800 J

|

Figure D-1: A Simple Example Showing the IDLDrawWidget and
Text Returned by IDL

Asthe figure shows, our first example program consists of two buttons (“Plot Data’
and “Exit”), agraphics area, and atext box. All of these elements reside on top of
what iscalled aform in Visual Basic parlance. (A formin Visual Basicissimilar to a
top level basein IDL.) Clicking the Plot Data button causes IDL to produce the
surface plot shown. Clicking Exit causes IDL and the Visual Basic program to free
memory and exit.

Creating an Interface and Handling Events IDL Connectivity Bridges

Appendix D: The IDLDrawWidget ActiveX Control

475

1f Private Sub Form Load()
2 n = | DLDr awW dget 1. | ni t | DL(For nil. hWhd)
3 If n <= 0 Then
4 MsgBox ("IDL failed to initialize")
5 End
6 End |f
7 | DLDr awW dget 1. Cr eat eDr awW dget
8 | DLDr awW dget 1. Set Qut put Wad (| DL_Qut put _Box. hWhd)
9] End Sub
: 10
Vlsu_al 11§ Private Sub Plot_Button_Cick()
Basic 1, | DLDr awW dget 1. ExecuteStr ("Z = SHI FT(DI ST(40), 20, 20)")
13 | DLDr awW dget 1. ExecuteStr ("Z = EXP(-(2/10)72)")
14 | DLDr awW dget 1. Execut eStr (" SURFACE, Z")
15 | DLDr awW dget 1. ExecuteStr ("PRINT, SIZE(Z)")
16 End Sub
17
18f Private Sub Exit_Button_dick()
19 | DLDr awwW dget 1. DoExi t
20 End
21§ End Sub

Table D-2: Source code for a Simple Example

Drawing the Interface

Begin building the first example by creating a new Visua Basic project, adding the

IDL ActiveX control, and drawing the interface components.

Launch Microsoft Visual Basic and create a new project.

1. AddthelIDL ActiveX component to the project. Visual Basic displays alist of
al available components when you select the Components from the Project

menu.

IDL Connectivity Bridges Creating an Interface and Handling Events

476 Appendix D: The IDLDrawWidget ActiveX Control

Components E

Controls | Designers Insertable Objects |

[Index OLE Contral module
[[JkeywordSearch OLE Control module
[CILM Runtime Control

[Media Clip

L N T . R

el de LA A

Figure D-2: List of Available Components

Select the “IDLDrawX3 ActiveX Control module’ check box and close the
Components window. Visual Basic will display the IDLDrawWidget'siconin
the tool bar.

2. Begindrawing theinterface. The “Plot” and “Exit” buttons were created with
the CommandButton widget, the text box was created with the TextBox
widget, and the graphics display area was created with | DL DrawWidget.

Specifying the IDL Path and Graphics Level

Having added | DL DrawWidget to the Visual Basic project, we now have access to
IDL DrawWidget's properties and methods. Use the | dIPath and GraphicsL evel
properties to specify the directory path of the IDL ActiveX control and to choose
between IDL’s direct and object graphics capabilities. Refer to Appendix E,
“IDLDrawWidget Control Reference” for acomplete list of the properties and
methods to | DL DrawWidget.

1. UseVisua Basic's Properties window to select the IDL DrawWidget. All of
the IDL DrawWidget’s properties can be set using the Properties window.
Many properties can aso be set within the source code. These distinctions are
noted in Appendix E, “IDLDrawWidget Control Reference”.

Creating an Interface and Handling Events IDL Connectivity Bridges

Appendix D: The IDLDrawWidget ActiveX Control 477

| IDLDrawwidget1 IDLDrawiwidget =

Alphabetic |Categ0rized |

-
[IDLDraw'idget 1

EackColor] &Hs000000F 2

EaseMarne IDLCrawhidget 1 Base

EiorderStyle 0 - Mone

Eufferld -1

Causesvalidation True

Craglcon {Mone)

Cragtode 0 - wbranual

Lt awawidgetMame IDLDrawwidget 1

Enable True

Enabled True

GetyalueMarne

GraphicsLevel 1

Height 2415

HelpZontextID |0

IdiPath =l
{Name)

Returns the name used in code ko identify an
ohject.

Figure D-3: Visual Basic Properties Window
2. Locate the IdIPath property and enter the directory path to your IDL
installation. If you installed IDL inits default location, this path will be:
c:\rsi\idlxx
where xx isthe current IDL version.

3. Locatethe GraphicsL evel property and set it equal to 1. ThisselectsIDL’s
direct graphics. A setting of 2 selects IDL’s object graphics.

Initializing IDL

With the interface drawn and the properties of the I DL DrawWidget set, now write
some Visual Basic code to give the application behavior. By double-clicking on the
form which contains all of the interface components, Visual Basic will automatically
generate the following subroutine.

Private Sub Form Load()
End Sub

IDL Connectivity Bridges Creating an Interface and Handling Events

478 Appendix D: The IDLDrawWidget ActiveX Control

Visual Basic's Form_L oad routine executes automatically when a program starts
running. This procedure can be used to initialize IDL, create the | DL DrawWidget,
and direct output from IDL to atext box. The code to accomplish these tasks will be
placed between the two statements listed above.

IDL needsto beinitialized before Visual Basic can interact with the
IDLDrawWidget. Thisis done with the I nitl DL method. InitIDL takes the hWnd
of the form containing the | DL DrawWidget as an argument and returns 1 or less
than 1, depending on whether or not IDL initialized successfully. Assuming that the
default names given to the form and the | DL DrawWidget were not changed, IDL
can beinitialized with the following statement.

n = | DLDr awW dget 1. | ni t | DL(For mL. h\Whd)

A conditional statement isincluded to display an error message and exit the program
if IDL failed toinitialize.

If n <= 0 Then
MsgBox ("IDL failed to initialize")
End

End |f

Creating the Draw Widget

When a box is drawn with the “IDLDrawWidget” icon in the toolbar, an OCX frame
is created. Thisisacontainer for the IDL DrawWidget. This container is analogous
to an IDL widget base. The graphics window that will be used by IDL still must be
created. Thisisaccomplished with the CreateDrawWidget method, as shown in the
following statement:

| DLDr awW dget 1. Cr eat eDr awW dget
Directing IDL Output to a Text Box

The exampl e program displays any output returned by IDL in atext box created in
Visual Basic. Thisis accomplished with the SetOutputWnd method of the

IDL DrawWidget. The SetOutputWnd method takes the hwnd of the text box that
will contain the IDL output as an argument. The text box in the example program is
named | DL_Output_Box, hence the following statement.

| DLDr awW dget 1. Set Qut put Waid (| DL_CQut put _Box. h\Wd)
Note

Although thisis the last statement within the Form_L oad() subroutine, it could be
placed before the call to I nitI DL to get standard IDL version information printed.

Creating an Interface and Handling Events IDL Connectivity Bridges

Appendix D: The IDLDrawWidget ActiveX Control 479

Responding to Events and Issuing IDL Commands

The easiest way to integrate IDL with Visua Basicisto let Visual Basic manage the
events and passinstructionsto IDL. Recall that our example program contains two
buttons: “Plot Data’ and “Exit”. When you double-click on “Plot Data’, Visual Basic
automatically creates the following subroutine:

Private Sub Plot_Button_dick()
End Sub

Visua Basic will execute any statements within this subroutine when the user clicks
“Plot Data’. Instructions are passed to IDL using the ExecuteStr method to the

IDL DrawWidget. The ExecuteStr method takes a string as an argument. Thisstring
ispassed to IDL for execution asif it were entered at the IDL command line.

The five statements which follow instruct IDL to produce the surface plot shown in
the figure above.

| DLDr awW dget 1. Execut eStr
| DLDr awW dget 1. Execut eStr
| DLDr awW dget 1. Execut eStr
| DLDr awW dget 1. Execut eStr

"Z = SHIFT(DI ST(40), 20, 20)")
"Z = EXP(-(Z/10)"2)")

" SURFACE, Z")

"PRINT, SIZE(Z)")

—~ e~~~

Cleaning Up and Exiting

This project exits when the user clicks “Exit”. Exiting is atwo step process. IDL is
given a chance to clean up and exit by issuing the DoExit method. The Visual Basic
program then exits with an End statement.

Private Sub Exit_Button_dick()
| DLDr awW dget 1. DoExi t
End

End Sub

IDL Connectivity Bridges Creating an Interface and Handling Events

480 Appendix D: The IDLDrawWidget ActiveX Control

Working with IDL Procedures

In this next example a project is created that uses multiple IDL procedures. Here the
same issues apply as when developing a standard IDL program with a graphical user
interface. In addition, managing memory when moving from one procedure to
another should be considered. It isimportant to realize that the ActiveX control
interacts with IDL at the main level. Thus, a Visual Basic program passing
instructionsto IDL isidentical to entering the sameinstructions at the IDL command
line. In this example Visual Basic isonly used to create the user interface and
dispatch events. The dataresides in memory controlled by IDL. IDL is used for all
data processing and display functions.

The following figure shows the user interface of the example project. The project is
part of the IDL distribution and residesin the
exanpl es\ doc\ Act i veX\ SecondExanpl e directory.

. Second Example: Interacting with IDL Procedures [O] X]

Open

Scale Original |
IBIack #whhite VI

Roberts |

Exit

.

Original Filtered

% Compiled module: SETCOLORS. ;I
% Compiled module: APPLYSOBEL.

*% Compiled module: APPLYROBERTS.

% Loaded DLM: JPEG.

% Compiled module: COMGRID.

% Compiled module: LOADCT.

% Compiled module: FILEPATH.

% LOADCT: Loading table B LINEAR LI

Figure D-4: The User Interface with Two Draw Widgets

The user interface consists of two | DL DrawWidget objects. The one on the left will
display an image read from a JPEG file. The window on the right displays what the
image looks like after processing. Buttons allow the user to scale the image and
perform Roberts and Sobel filtering operations on the data.

Working with IDL Procedures IDL Connectivity Bridges

Appendix D: The IDLDrawWidget ActiveX Control 481

Creating the Interface

Theinterface is created asit wasin the first example, by drawing the interface
componentsin Visual Basic. Two | DL DrawWidgets are created. Set the path

(c:\rsi\Vidl xx wherexx isthe current IDL version) and graphicslevel properties
(type 1) of both.

Initializing IDL

Although there are two | DL DrawWidget objects, only one instance of the ActiveX
control needsto be initialized. Both of the IDL DrawWidget objects do need to be
created, however.

Thisis done with the two statements below:

| DLDr awW dget 1. Cr eat eDr awW dget
| DLDr awW dget 2. Cr eat eDr awW dget

Compiling the IDL Code

This example uses IDL procedures contained ina. pr o file named

SecondExanpl e. pro. Thisfile contains IDL procedures. Before these procedures
can be called from Visual Basic, SecondExanpl e. pr o needs to be compiled.
This assumesthat the . pr o fileresidesin the same directory asthe Visual Basic
project. The path method of the App object returns the directory from which the
Visual Basic application was launched. Pass this directory to IDL with the statements

WorkingDirectory = "CD, '" + App.Path + "'"
| DLDr awW dget 1. Execut eStr (Wor ki ngDi rectory)

The. pr o can then be compiled. A conditional statement is used to exit the program
if IDL was unableto locatethe. pr o file.

Dispatching Button Events to IDL
Because Visual Basic isused primarily for the user interface components of the

application, IDL’s procedures have been created for processing the button eventsin
the application. Thisis accomplished through the ExecuteStr method of the

IDL Connectivity Bridges Working with IDL Procedures

482 Appendix D: The IDLDrawWidget ActiveX Control
IDL DrawWidget, as called in the following figure; when you click “Open”, the
OpenFile procedure is defined as below.
1] Private Sub Open_Button_dick(lndex As Integer)
Visual 2 | DLCormand = "QpenFile, " + Str(Basel D)
Basic 3 | DLDr awW dget 1. Execut eStr (| DLConmand)
41 End Sub
Table D-3: User Interface of Example Project
OpenFileisauser procedure that utilizes IDL’s DIALOG_PICKFILE function to
enable the user to select afile for display within the I DL DrawWidget.
Cleaning Up and Exiting
Like the first example, this program exits when the user clicks “ Exit”. An additional
call has been made to DestroyDrawWidget. Thisisn't necessary when exiting
because the windowing system will destroy the widget. If you want to change the
GraphicsL evel property of the IDL DrawWidget during program execution use this
method.
1] PRO penFile, TLB
2 W DGET_CONTROL, TLB, GET_UWVALUE = ptr
3 Pat hName = DI ALOG Pl CKFI LE(TITLE = $
4 "Select a JPEGfile', FILTER = '*.jpg')
5 | F (PathName NE '') THEN BEG N
6 DEVI CE, DECOVPCSED = 0
7 READ JPEG, Pat hNanme, Data, Col orTable
IDL 8 (*(*ptr).Original ArrayPTR) = Data
9 (*(*ptr). OrigCol or MapPTR) = Col or Tabl e
10 TVLCT, (*(*ptr).OigCol or MapPTR)
11 TV, (*(*ptr).Oiginal ArrayPTR)
12 ENDI F ELSE BEG N
13 Result = DI ALOG MESSAGE(' No JPEG file selected , /ERROR)
14 ENDELSE
15 END

Table D-4: The Open File Procedure

Working with IDL Procedures IDL Connectivity Bridges

Appendix D: The IDLDrawWidget ActiveX Control 483

Advanced Examples

Each of the following examples builds on the concepts that you've already learned in
this chapter.

Example Code

The user interface and projects for each of the examples have been created and can
be found in the distribution in the exanpl es\ doc\ Acti veX\ pr oj ect
directory where project is the name of the example.

These examples assume that you are already familiar with the following concepts:

Creating anew project in Visual Basic;

Adding the | DL DrawWidget control to the VB control toolbar;

Drawing the I DL DrawWidget on your form;

Initializing IDL with InitI DL ;

Creating the draw widget with CreateDrawWidget;

Executing commands with ExecuteStr;

Using IDL . pr o code to respond to auto-events within the | DL DrawWidget;
Setting properties for the | DL DrawWidget objects.

These examples demonstrate the following:

Copying and Printing IDL Graphics
XLoadCT Functionality Using Visual Basic
XPalette Functionality Using Visual Basic
Integrating Object Graphics Using VB
Sharing a Grid Control Array with IDL

Handling Events within Visual Basic

IDL Connectivity Bridges Advanced Examples

484 Appendix D: The IDLDrawWidget ActiveX Control

Copying and Printing IDL Graphics

The VBCopyPrint example demonstrates how to use either the Windows clipboard or
object graphicsto print the contents of an | DL DrawWidget window.

This exampleillustrates the following concepts:
e Opening an existing project in Visual Basic;

e Copying an IDL graphic to the Windows clipboard using the CopyWindow
method;

e Executing IDL user routines,
e Printing an IDL graphic.
Opening the VBCopyPrint project
Select “Existing” from the Visual Basic New Project dialog. In the IDL distribution,

changeto the exanpl es\ docs\ Act i veX\ VBCopyPri nt directory, and open the
project VBCopyPrint.vbp, as shown in the following figure.

Mew Project HE

Mew Esisting IFlecenll

Lookin |3 VBCopyPiint =l s | | =
T s -1
VB CopyPr 03 1ds53
7 examples J
3 doc
1 ActiveX
E=CF /B Copy Pri
g2 E_Drive)
5= F_Diive [F) =
File name: I ﬂl
Files of type: IPID\EC[Files [* vbp:™ mak.* wbal j Cancel |

Help |

™ Daon't show this dialog in the future

Figure D-5: Opening the VBCopyPrint project

Copying and Printing IDL Graphics IDL Connectivity Bridges

Appendix D: The IDLDrawWidget ActiveX Control 485

Running the VBCopyPrint Example

Select “ Start” from the Run menu to run the example. You should see the graphic
shown in the following figure.

Printing and Copying Direct Graphics

Copy

1DL Print

il

B Print

Figure D-6: VBCopyPrint example

Copying IDL Graphic to the Clipboard

To copy the graphic, click on “Copy”. The code for “Copy” uses the CopyWindow
method to copy the contents of the graphic to the Windows clipboard as showninline
6 of the following table.

1 Private Sub cndCopy_dick()
2 ' Copy the direct graphics windowto the clipboard
3 Scr een. MobusePoi nt er = vbHour gl ass
4 'Erase anything currently on the clipboard
Visual 5 Cl i pboard. d ear
Basic 6 ' Copy the draw wi dget to the clipboard
7 | DLDr awW dget 1. CopyW ndow
8 Scr een. MousePoi nter = vbDef aul t
9 MsgBox "W ndow copied to clipboard."”
10 End Sub

Table D-5: Copy button Source Code

IDL Connectivity Bridges Copying and Printing IDL Graphics

486

Appendix D: The IDLDrawWidget ActiveX Control

Printing the IDL Graphic Using IDL Object Graphics

To print the graphic using IDL, click on “IDL Print”. The“IDL Print” button uses
IDL’s object graphics to print the contents of the window by creating an image object
and sending the image to a printer object through a user routine VBPrintWindow.

1

2

3

4

5

6

7

8

9

10

11
IDL 12
13
14
15
16
17
18
19
20

22

PRO VBPri nt Wndow, Drawid

; Get the wi ndow i ndex of the drawable to be printed
W DGET_CONTROL, Drawi d, Get Val ue=l ndex

;Create a Printer object and draw the graphic to it
oPrinter = OBJ_NEW (' IDLgrPrinter')

;Display a print dialog box
Result = DI ALOG_PRI NTERSETUP(oPri nt er)

oPrinter->Draw, oView

END ; VBPri nt W ndow

Table D-6: IDL VBPrintWindow Code

Executing IDL User Routines with Visual Basic

The VBCopyPrint example executes a user routine, written in DL, to support the
printing of the | DL DrawWidget window. Thisis done with the ExecuteStr method,

Copying and Printing IDL Graphics IDL Connectivity Bridges

Appendix D: The IDLDrawWidget ActiveX Control

487

as shown in line 4 below, by passing a string of the routine name along with the ID of
the IDL DrawWidget.

Visual
Basic

O©CoOoO~NOOOaO~WNE

Private Sub crmdPrintI DL_d i ck()
"Print the current drawable wi dget's w ndow contents
"using | DL object graphics
Scr een. MousePoi nt er = vbHour gl ass
| DLDr awW dget 1. Execut eStr "VBPri nt W ndow, " &
St r$(1 DLDr awW dget 1. Dr awi d)
Scr een. MousePoi nter = vbDefaul t
MsgBox "W ndow sent to printer."
End Sub

Table D-7: Print Button Source Code

Printing the IDL Graphic Using Visual Basic

The VBPrint command uses the Windows clipboard and Visual Basic printer
support to print the IDL Graphic, as shown in the following table.

Visual
Basic

O©CoOoO~NOOOPS~rWNERE

Private Sub crmdPrintVB_Cick()
CommonDi al ogl. Cancel Error = True
On Error GoTo ErrHandl er
ComonDi al ogl. ShowPri nt er
-- Copy the window s contents to the clipboard
'Erase anything currently on the clipboard
Cl i pboard. O ear
| DLDr awW dget 1. CopyW ndow
'-- Send the picture located on the clipboard,
"to the printer
Printer.PaintPicture Cdipboard. GetData, 0, 0O
Printer.EndDoc 'Send it to the printer
Exit Sub
Err Handl er:

Exit Sub
End Sub

IDL Connectivity Bridges

Table D-8: VBPrint Command

Copying and Printing IDL Graphics

488 Appendix D: The IDLDrawWidget ActiveX Control

XLoadCT Functionality Using Visual Basic

The VBL0adCT example duplicates the XLOADCT functionality using aVB
interface. The VBLoadCT. pr o source code (located in the

exanpl es\ docs\ Acti veX\ VBLoadCt directory of the IDL installation directory)
isafunctional duplicate of XLOADCT with procedure calls replacing the

x| oadct _event procedure aswell as IDL widgets being replaced by VB controls.
See the following figure for more information.

In addition, this example extends XLOADCT by adding the following features:
e Options menu by clicking the right mouse button on a color;
e Useof IDL syntax to create separate functions for red, blue and green;
* Ability to save user created color tables.

This example illustrates the following concepts:
« Maodifying existing IDL library code for use with the | DL DrawWidget;
» IDL to Visual Basic color table conversion

XLoadCT Functionality Using Visual Basic IDL Connectivity Bridges

Appendix D: The IDLDrawWidget ActiveX Control 489

. VBLoadCT I[=] E3
Eile Edit
B LINEAR -
BLUEAWHITE
GRM-RED-BLUAWHT
RED TEMPERATURE
BLUE/GREEMN/RED/YELLOW
STD GamMba-ll
1} PRISHM
RED-PURFLE
4 »
J—I J GREENAWHITE LINEAR
Stretch Bottom GRMNAWHT EXPOMENTIAL
100 GREEM-PINK
a » ELUE-RED
[l —IJ 16 LEVEL
Stretch Top RAIMNBOW
1 STEPS
STERM SPECIAL
4 3
J —I J Haze LI

Gamma Comection

Figure D-7: VBLoadCT Example

IDL Connectivity Bridges XLoadCT Functionality Using Visual Basic

490 Appendix D: The IDLDrawWidget ActiveX Control

XPalette Functionality Using Visual Basic

Like VBL 0adCT, VBPalette demonstrates how to duplicate IDL tool functionality
using aVisual Basic interface. The VBPal et t e. pr o file (located in the

exanpl es\ docs\ Acti veX\ VBPal et t e directory of the IDL installation
directory) isafunctiona duplicate of the XPalette source with the event procedure
and IDL widgets replaced with auto-event procedures and VB controls.

This example illustrates the following concepts:
* Maodifying existing IDL library code for use with the I DL DrawWidget;

e Converting an IDL event procedure to the | DL DrawWidget auto-event
procedures

. ¥BPalette [_[o]x]

File Palette

50 100 150 200 250 300

Green

50 100 150 200 250 300
By LINEAR Blue

Color Index | 115

GRN-RED-BLU-WHT
B 5 RED TEMPERATURE
ELUE/GREEN/RED/VELLOW
Green |29 5TD GAMMAII
PRISM
Blue 295 RED-PURPLE 50 100 150 200 250 300
1 colors].thl
Cieate 5 Color Function -
Start Index 1DL Function Output bfindow
-
Red= a |bylscl[sm[mdgen[ZSE]‘.WD]] Reset Red J
Gireen = 0 |bylscl[sm[mdgen[ZSE]‘.DS]] Resst Green
Blue = I Reset Bl
lue 0 |hylscl[sm[mdgan[255] 025)) eset Blue j

Figure D-8: VBPalette Example

XPalette Functionality Using Visual Basic IDL Connectivity Bridges

Appendix D: The IDLDrawWidget ActiveX Control 491

Integrating Object Graphics Using VB

Most of the examples covered to this point have used IDL’s direct graphics sub-
system to demonstrate using the | DL DrawWidget control. The I DL DrawWidget
can also use IDL’s object graphics sub-system by changing the
IDL DrawWidget.GraphicsL evel property as demonstrated with the VBObj Graph
examplein the following figure. This example illustrates the following concepts:

* Setting the GraphicsL evel property to create an object graphics window;

e Trandating agraphics abject using VB controls.

e Using IDLDrawWidget auto-events.

Object Graphics Example
FEile Edit

Left click and drag on surface to rotate.

l Auto Rotate

Figure D-9: VBObjGraph example

Example Code
See thefileslocated in the exanpl es\ docs\ Acti veX\ VBOhj G- aph directory

of the IDL installation directory for example code.

IDL Connectivity Bridges Integrating Object Graphics Using VB

492 Appendix D: The IDLDrawWidget ActiveX Control

Sharing a Grid Control Array with IDL

VBSharelD demonstrates sharing one dimensional data between Visual Basic and
IDL using the SetNamedArray method of the | DL DrawWidget object. The datais
presented to the user in aVisual Basic grid control enabling the user to edit the data
and see theresultsin real time. See the following figure.

This example illustrates the following concepts:

« Shows how to process mouse events within VB to get the data coordinates of
an IDL plot.

« Demonstrates how to convert (x,y) VB coordinates into IDL data coordinates,
to give the cursor location in data values rel ative to the current plot.

e Demonstrates how to use aVB grid control to edit data valuesthat are
reflected in the IDL plot after each keystroke

w. VBShareld I[=] B3
Move the cursor over the plot. and type a number to edit the current
value. or click on the cell to edit.

1.0]
0.5 3
oo E
—0sf =
-1.oE =

G 0 A0 g0 &0 100

000 841 809 41 757 -959 -279 57 389 412

- 544 -1.000 - 537 420 591 B50 -.288 - 961 - 751 150

13 a7 -009 - 546 -132 7E3 956 271 - B4

-988 -404 551 1.000 529 -428 -992 - F44 296 964

745 -159 -917 -832 il 851 902 124 - 768 - 954

- 262 670 987 .39 -E59 -1.000 -522 436 993 B37

-305 - 966 -739 167 520 827 -027 - 856 -£98 -115

TT4 L9351 254 -B77 -985 -,388 JBEE 1.000 514 - 444

- 994 - 530 313 968 73 -176 -923 -g22 035 BRD

894 106 -779 -.948 - 245 683 984 380 -573 -999

Feset | IbICaords

Figure D-10: VBSharelD

Sharing a Grid Control Array with IDL IDL Connectivity Bridges

Appendix D: The IDLDrawWidget ActiveX Control 493

Example Code
Seethefileslocated in the exanpl es\ docs\ Act i veX\ VBShar e1D directory of
the IDL installation directory for example code.

IDL Connectivity Bridges Sharing a Grid Control Array with IDL

494 Appendix D: The IDLDrawWidget ActiveX Control

Handling Events within Visual Basic

The VBPaint example uses direct graphicsto create a simple drawing program. A
direct graphics window is used to respond to events within VB. Each click event will
get the (x,y) location within the window, and modify the color of the current pixel in
the image. See the following figure:.

This example illustrates the following concepts:
e Converting from aVB pixel coordinate system to the IDL coordinate system;

e Converting aVB color representation (long) into an IDL color representation
(RGB);

¢ Modifying an IDL RGB color table item with a color chosen/created from VB
and the Window's common color dialog;

e Processing mouse events within VB to draw into an IDL window

&, Exampled !EE
Hold Left button to draw. Right button to erase

o |

Clear

Color HE
Basic colors:
o
il i |
I T
ErENENN N
EEEEEEEN

LCustom colors:

I
FEEEEE..

Define Custom Colors > |

Cancel |

Figure D-11: VBPaint Example

Handling Events within Visual Basic IDL Connectivity Bridges

Appendix D: The IDLDrawWidget ActiveX Control 495

Example Code
See thefileslocated in the exanpl es\ docs\ Act i veX\ VBPai nt directory of
the IDL installation directory for example code.

IDL Connectivity Bridges Handling Events within Visual Basic

496 Appendix D: The IDLDrawWidget ActiveX Control

Distributing Your ActiveX Application

For information on how to distribute an application developed with the IDL ActiveX
control, see Chapter 27, “ Distributing ActiveX Applications’ in the Building IDL
Applications manual.

Distributing Your ActiveX Application IDL Connectivity Bridges

Appendix E

IDLDrawWidget
Control Reference

This chapter describes the following topics:

IDLDrawWidget 498
Methods ..., 499
Do Methods (RuntimeOnly) 509
Properties............... 511

IDL Connectivity Bridges

Read Only Properties 515
Auto Event Properties 517
Events......... i 519

497

498 Appendix E: IDLDrawWidget Control Reference

IDLDrawWidget

The IDLDrawWidget is an ActiveX control that provides an easy mechanism for
integrating IDL with Microsoft Windows applications written in C, C++, Visua
Basic, Fortran, Delphi, etc. Methods and properties of the IDLDrawWidget provide
the interface between IDL and an external application. The rest of this section
describes the following for the IDL DrawWidget:

e Methods

* Do Methods (Runtime Only)
e Properties

¢ Read Only Properties

e Auto Event Properties

¢ Events

IDLDrawWidget IDL Connectivity Bridges

Appendix E: IDLDrawWidget Control Reference 499

Methods

In ActiveX terminology, methods are specia statements that execute on behalf of an
object in a program. For example, the ExecuteStr method can be used to execute an
IDL statement, function, or procedure when the user clicks on a button in a Visual
Basic program. The syntax of a method statement is:

obj ect. met hod val ue
where

e Object isthe name of an object you want to control, for example an
IDLDrawWidget.

e Method is the name of the method you want to execute.

* Valueisan optional parameter used by the method. The various methodsto the
IDLDrawWidget may require zero, one, or multiple parameters.

Note
When amethod returnsaBOOL, the value TRUE is equal to 1 and FALSE is equal
to 0.

CopyNamedArray

This method copies an IDL array to an OLE Variant array.
Parameters

BSTR: The name of the array variable that you wish to copy.
Returns

VARIANT: Reference to the array.
Remarks

This function returns an array reference that islocal to the calling function.
Attempting to use this array outside the calling function could result in runtime
errors.

IDL Connectivity Bridges Methods

500 Appendix E: IDLDrawWidget Control Reference

CopyWindow

This method copies the contents of the IDL DrawWidget window to the Windows
clipboard.

Parameters
None.
Returns

BOOL: TRUE if successful.

CreateDrawWidget

This method creates an IDLDrawWidget in an ActiveX control frame. When you
drag and drop the IDLDrawWidget, you are creating the frame that will contain the

actual draw widget. Drawing operations to the control cannot be made until this
method is called.

Parameters
None.
Returns
LONG: The widget ID of the created draw widget or -1 in the event of an error.
DestroyDrawWidget
This method destroys the IDL DrawWidget, but not the ActiveX control frame.
Parameters
None.
Returns

None.
DoEXxit

This method exits the ActiveX control and frees any resourcesin use by IDL.

Methods IDL Connectivity Bridges

Appendix E: IDLDrawWidget Control Reference 501

After al IDL ActiveX control use is complete, but before the EDE application exits,
you must call DoExit to allow the ActiveX control to shutdown IDL gracefully and
free any resourcesin use.

Parameters
None.

Returns
None.

Remarks

In spite of the name, DoExit is not one of the IDL ActiveX control auto events. Like
InitIDL, DoExit should be called once and only when you are exiting the EDE
application.

Warning
Once DoExit is called, you are not allowed to call methods or set properties within

the IDL ActiveX control from the currently running EDE application, regardless of
which IDL DrawWidget the method was called on. Attempting to do so will resultin
aruntime error subsequently causing the EDE application to crash.

ExecuteStr

This method passes a string to IDL which IDL then executes.
Parameters

BSTR: A string containing the command that IDL will execute.
Returns

LONG: Oif successful or the IDL error code if it fails.
Remarks

Most IDL commands that are executed with ExecuteStr run in the main level.

GetNamedData

This method returns the IDL data value associated with the named variable.

IDL Connectivity Bridges Methods

502 Appendix E: IDLDrawWidget Control Reference

Parameters
BSTR: A string containing the name of an IDL variable.
Returns

VARIANT: Returns the value of the requested data. The type will be EMPTY if the
IDL variable doesn’t exist.

Remarks

The following table lists the supported IDL data types and the corresponding
VARIANT datatypes.

IDL Type Variant Type

IDL_TYP BYTE VT Ull
IDL_TYP_INT VT 12
IDL_TYP LONG |VT_l4
IDL_TYP FLOAT |VT R4
IDL_TYP_DOUBLE | VT _R8
IDL_TYP_STRING | VT _BSTR

Table E-9: Supported IDL Data Types and the Corresponding
VARIANT Data Types

InitIDL

Thismethod initializes IDL. IDL only needs to be initialized once for each instance
of the ActiveX control.

Parameters

LONG: InitIDL iscaled with the hWnd of the main window for the container
application. If thisvalueis null, the ActiveX control usesthe hwnd of the ActiveX
control frame.

Methods IDL Connectivity Bridges

Appendix E: IDLDrawWidget Control Reference 503

Returns

LONG: Long valueindicating status of IDL

Value Meaning
1 Successful
0 Failure
-1 IDL ActiveX control is
not licensed
-2 IDL isunlicensed (demo)

Table E-10: Status of IDL

If your application contains more than asingle IDL DrawWidget (e.g.,
IDLDrawWidgetl and IDL DrawWidget2), the InitIDL method should only be called
on one of the objects, not both.

TheIDL ActiveX control relies on IDL and must, at a minimum, have an IDL
runtime distribution to operate successfully. The IdIPath property can be set so the
control can find avalid IDL distribution (thei dI . dI I). If avalid distribution is not
found in either the path as set in the IdIPath property or the current directory, adiaog
will be displayed giving the user the opportunity to specify the location of his DL
distribution. This behavior may be overridden at runtime by locating and specifying
the path to the IDL distribution prior to calling either the InitIDL or SetOutputWnd
methods.

InitIDLEX

Thismethod initializes IDL. It isidentical to the InitiIDL method except that it has an
additional parameter, Flags, allowing initialization flags to be passed on to IDL. See
the description of the “InitiIDL” on page 502 for details on the return value.

Parameters

LONG: InitIDL iscalled with the hwnd of the main window for the container
application. If thisvalueis null, the ActiveX control usesthe hwnd of the ActiveX
control frame.

IDL Connectivity Bridges Methods

504 Appendix E: IDLDrawWidget Control Reference

LONG: Flags. A bitmask used to specify initialization options. The allowed bit
values are:

Flag Meaning

IDL_INIT_RUNTIME | Setting thisbit causes IDL to check out aruntime
license instead of the normal license. In Visua C++
applications, the#def i ne 1 DL_I NI T_RUNTI ME
value exported in export . h can be used. For Visual
Basic applications use the actual value of this
constant, | DL_I NI T_RUNTI ME=4, since the defined
constant is not available.

IDL_INIT_STUDENT | Setting this bit causes IDL to check out a student
license instead of the normal license. In Visual C++
applications, the#defi ne 1 DL_I NI T_STUDENT
value exported in expor t . h can be used. For Visual
Basic applications use the actual value of this
constant, | DL_| NI T_STUDENT=128, since the
defined constant is not available.

Table E-11: InitIDLEx Flags
Returns

LONG: Long value indicating status of IDL. See the description of the return value
under “InitIDL” on page 502 for details.

Print

This method prints the contents of the ActiveX control to the current default printer
for both Direct and Object Graphics windows. The Print method will print the
contents of a Direct Graphics window at screen resolution (72-96 dpi). For
information about controlling print resolution of an object graphics window, see the
Bufferld property.

Note
In order to print the contents of an Object Graphics window, you must associate the
IDL graphicstree (an IDLgrView object) with the IDLgrwWindow object used by the
underlying draw widget. Do this by setting the GRAPHICS_TREE property of the
IDLgrWindow object to the IDLgrView object:

; Retrieve the wi ndow obj ect associated with the draw wi dget.

Methods IDL Connectivity Bridges

Appendix E: IDLDrawWidget Control Reference 505

| DLDr awW dget : : Execut eStr ("W dget _Control, |DLDrawWw dget, $
Get _Val ue =oW ndow');

; Set the Graphics_Tree property to the view object.

| DLDr awW dget : : Execut eStr (" oW ndow >Set Property, $
Graphics_Tree = oView');

Parameters

XOffset: The X offset to print the graphic in 0.01 of amillimeter.

Y Offset: The Y offset to print the graphic in 0.01 of a millimeter.

Width: The desired width of the printed graphic in 0.01 of a millimeter.
Height: The desired height of the printed graphic in 0.01 of amillimeter.

The X offset plus the width should be less than or equal to the width of asingle page.
TheY offset plus the height should be less than or equal to the height of asingle
page. The origin of the offset 0,0 isin the upper left corner of a page. If these values
are set to 0, the ActiveX control will print agraphic in the upper |eft corner of the
page with the size of the graphic approximating the size of the image on the screen.

Returns

BOOL: TRUE if printing succeeded.
RegisterForEvents

This method causes | DL DrawWidget to pass the specified events to the application.
These events only apply if the user hasn't set the corresponding auto event property.

Parameters

LONG: Flags that indicate which events you wish to forward to your application.
Values can be combined if multiple events are desired.

Value Meaning
0 Stop forwarding al events
1 Forward mouse move events
2 Forward mouse button events

Table E-12: Forwarding Events

IDL Connectivity Bridges Methods

506 Appendix E: IDLDrawWidget Control Reference

Value Meaning
4 Forward view scrolled events
8 Forward expose events

Table E-12: Forwarding Events (Continued)

Note
Motion events may be generated continuously in response to certain operationsin
IDL. Asaresult, if you forward mouse move events, your event handler should
check the reported position of the mouse to determine whether it has in fact moved
before doing extensive processing.

Returns

BOOL: TRUE if successful.
SetNamedArray

This method creates anamed IDL array with the specified data. The data pointer is
shared with IDL and the EDE application. Thus, changesin either IDL or the EDE
will be reflected in both.

Parameters

BSTR: Name of array variableto createin IDL.
VARIANT: Array data to be shared with IDL.

BOOL: Trueif IDL should free a shared array when IDL releasesits reference, false
if not.

Returns
WORD: 1 if successful, O if set failed.
Remarks

Because SetNamedArray creates an array whose data is shared between IDL and the
EDE application, IDL constructs that could change the type and/or dimensionality of
the array must be avoided, as these constructs could have the side effect of creating a
new array in IDL and thus breaking the shared link.

Methods IDL Connectivity Bridges

Appendix E: IDLDrawWidget Control Reference

507

The array parameter of SetNamedArray must have a lifetime beyond the calling
function. Thus, in Visual Basic, it is recommended that the array be declared as
global in scope to prevent runtime errors from occurring.

Note

In order to alow data to be shared between IDL and the external environment, the
lock count on the underlying array is incremented. Some external environments,
notably later versions of Delphi, do not allow array locking to extend beyond a
single method call and will signal an error when SetNamedArray returns. If this
occurs, the data cannot be shared between IDL and the external environment using
SetNamedArray. Use the SetNamedData method to insert a copy of the array into

IDL.

The following table lists the accepted variant types and the corresponding IDL types.

Variant Types IDL Types
VT _UI1 - unsigned char IDL_TYP BYTE
VT _I1- signed char IDL_TYP BYTE
VT |2 - signed short IDL_TYP_INT
VT _14 - signed long IDL_TYP LONG

VT _R4 - float

IDL_TYP_FLOAT

VT_R8 - double

IDL_TYP_DOUBLE

Table E-13: Accepted Variant Types and the Corresponding IDL Types

SetNamedData

This method creates an IDL variable with the specified name and value. Both the
EDE and IDL maintain their own copy of the data. SetNamedData can also be used to
change the value of an existing IDL variable.

Parameters

BSTR: Name of the variable to createin IDL.

VARIANT: Datato be copied in IDL.

IDL Connectivity Bridges

Methods

508 Appendix E: IDLDrawWidget Control Reference

Returns
WORD 1 if successful.

SetOutputWnd

This method sends output from IDL to the specified window.
Parameters

HWND: The hwnd of the edit control that will receive the output.
Returns

None.

Note
SetOutputWnd is the only method that can be called prior to acall to InitIDL.

VariableExists

This method determines if a specified variableis defined in IDL.
Parameters

BSTR: Name of variable to check.
Returns

BOOL:TRUE if variableis defined in IDL at the main level. Falseif the variableis
not defined.

Methods IDL Connectivity Bridges

Appendix E: IDLDrawWidget Control Reference 509

Do Methods (Runtime Only)

Do Methods are methods that execute auto event procedures. Calling these methods
is helpful in simulating user interaction with a draw widget by forcing an auto event
to be called.

DoButtonPress
This method calls the IDL procedure specified in the OnButtonPress property.
Parameters
None.

Returns
None.
DoButtonRelease
This method callsthe IDL procedure specified in the OnButtonRelease property.
Parameters
None.
Returns
None.
DoExpose
This method callsthe IDL procedure specified in the OnExpose property.
Parameters
None.
Returns

None.

IDL Connectivity Bridges Do Methods (Runtime Only)

510 Appendix E: IDLDrawWidget Control Reference

DoMotion

This method callsthe IDL procedure specified in the OnMotion property.
Parameters

None.
Returns

None.

Do Methods (Runtime Only) IDL Connectivity Bridges

Appendix E: IDLDrawWidget Control Reference 511

Properties

Properties are used to specify the various attributes of an IDLDrawWidget, such asits
color, width and height. Most properties may be set at design time by configuring the
properties sheet in Visual Basic, or at runtime by executing statements in the program
code.

The syntax for setting a property in the codeis:
obj ect. property = val ue
where

* obj ect isthe name of the object you want to change (e.g. IDLDrawWidgetn
where n isthe number Visual Basic assigned to the IDLDrawWidget)

e property isthe characteristic you want to change
e val ue isthe new property setting

Note
All properties relating to window size and/or position arein pixel units unless

otherwise indicated.

BackColor

This property specifies the background color of the IDL widget. BackColor may be
specified at design time or runtime.

BaseName

This property names avariable that IDL will use for the pseudo base. If this property
is set, the IDLDrawWidget will create an IDL variable with this name that contains
the ID of the base widget. Because the base widget is a pseudo base, you should not
destroy it. The BaseName property can be set at design time or at runtime prior to a
call to CreateDrawWidget.

The default value is IDL DrawWidgetBase.

Bufferld

The Bufferld controls the type of print output you receive when printing with an
Object Graphics window (when the GraphicsLevel property is set to 2).

IDL Connectivity Bridges Properties

512 Appendix E: IDLDrawWidget Control Reference

1. A valueof -1 will cause the graphics to print using vector output. This format
is suitable for line graphs and mesh surfaces.

2. A vaue of O will cause the graphics to print at roughly two times the screen
resolution. Thisformat is suitable for shaded surfaces or vertex colored mesh
surfaces. Thisisthe default.

3. A value greater then O will be construed a s an IDLgrBuffer object reference
whose datawill be used for printing. Thisformat allows the programmer to
control the resolution of the output of the image.

For more information, see “IDLgrBuffer” in the IDL Reference Guide manual.

Note
You must set the GRAPHICS_TREE property of the IDLgrwWindow object for these
print options to work.

DrawWidgetName

Returns or setsavariable that IDL will use for the draw widget. If this property is set,
the IDLDrawWidget will create an IDL variable with this name that contains the ID
of the draw widget. The DrawWidgetName property can be set at design time, or at
runtime prior to acall to CreateDrawWidget.

The default value is IDL DrawWidget.
Enabled

Returns or sets a value that determines whether aform or control can respond to user-
generated events such as mouse events.

The default value is TRUE.
GraphicsLevel (Runtime/Design time)

This property specifies the graphics level of the draw widget. Legal valuesare 1 or 2.
If you set GraphicsLevel=1 and call the CreateDrawWidget method, the procedure
will create an IDL direct graphics window. GraphicsLevel=2 resultsin an IDL object
graphics window. The GraphicsLevel property can be set at design time or at runtime
prior to acall to CreateDrawWidget.

The default valueis 1.

Properties IDL Connectivity Bridges

Appendix E: IDLDrawWidget Control Reference 513

|dIPath

This property specifies the fully qualified path to the IDL.DLL. The IdIPath property
can be set at design time or at runtime prior to acall to InitIDL or SetOutputWnd.

The default valueis NULL.

Renderer

This property specifies either the software or hardware renderer for object graphics
windowsisto be used. It has no effect if the GraphicsLevel property isset to 1. Vaid
values are:

0 Platform native OpenGL

1 IDL’s software
implementation

By default, the setting in your IDL preferencesis used.

Retain (Runtime/Design time)

This property setsthe retain mode of the IDLDrawWidget: 0, 1, or 2. Theretain mode
specifies how IDL should handle backing store for the draw widget. Retain=0
specifies no backing store. Retain=1 requests that the server or window system
provide backing store. Retain=2 specifiesthat IDL provide backing store directly.
The Retain property can be set at design time or at runtime prior to acall to
CreateDrawWidget.

The default valueis 1.
Visible (Runtime/Design time)

Shows or hides the IDL DrawWidget. When Visibleis TRUE, the IDLDrawWidget is
shown; when FAL SE, the IDL DrawWidget is hidden. Hiding the IDLDrawWidget is
useful when the control is used as an interface to IDL and no graphics are intended

for display.
The default value is TRUE.

IDL Connectivity Bridges Properties

514 Appendix E: IDLDrawWidget Control Reference

Xsize (Design time)

Virtual width of IDLDrawWidget. If thisvalue is greater than the Xviewport value,
scroll barswill be added.

Ysize (Design time)

Virtual height of IDLDrawWidget. If this value is greater than the Y viewport value,
scroll barswill be added.

Properties IDL Connectivity Bridges

Appendix E: IDLDrawWidget Control Reference 515

Read Only Properties

Baseld (Runtime)

Widget ID of the pseudo base. The Baseld property is not valid until acall to
CreateDrawWidget has been made.

Drawld (Runtime)

Widget ID of the created draw widget. The Drawld property isnot valid until acall to
CreateDrawWidget has been made.

hwWnd (Runtime)

Window handle of the ActiveX control. The hWwnd property is not valid until acall to
CreateDrawWidget has been made.

LastldIError (Runtime)

A string that contains the last IDL error message. This string will not change if the
ExecuteStr method is called and an error does not occur.

Scroll

Trueif the widget will contain scroll bars.
The default value is FALSE.

Xoffset

Set at design time when the control is dropped or moved. Represents the x offset of
the draw widget within the parent application.

Xviewport

Set at design time when the control is dropped or moved. Represents the visible width
of the draw widget. If scroll bars are present, Xviewport will include the width of the
scroll bars.

IDL Connectivity Bridges Read Only Properties

516 Appendix E: IDLDrawWidget Control Reference

Yoffset

Set at design time when the control is dropped or moved. Representsthe y offset of
the draw widget within the parent application.

Yviewport
Set at design time when the control is dropped or moved. Represents the visible

height of the draw widget. If scroll bars are present, Yviewport will include the
height of the scroll bars.

Read Only Properties IDL Connectivity Bridges

Appendix E: IDLDrawWidget Control Reference 517

Auto Event Properties

Auto events are IDL procedures that are called automatically by the control in
response to certain events.

OnButtonPress

An DL procedure that will be called when a mouse button is pressed. The procedure
must be in the form:

pro button_press, drawd, button, xPos, yPos

The default valueis NULL.

OnButtonRelease
An DL procedure that will be called when a mouse button isreleased. The procedure
must be in the form:

pro button_rel ease, draw d, button, xPos, yPos

The default valueis NULL.
OnDDbIClick

An IDL procedure that will be called when a mouse button is double clicked within
the draw widget. The procedure must be in the form:

pro button_dblclick, drawid, button, xPos, yPos
The following table describes each parameter of the syntax:

Parameter Description

button Describes which mouse button has been clicked. The valid values
are:

» 1 — Left mouse button.
o 2 — Middle mouse button.
» 4 — Right mouse button.

Table E-14: OnDblClick Parameters

IDL Connectivity Bridges Auto Event Properties

518 Appendix E: IDLDrawWidget Control Reference

Parameter Description
xPos The horizontal position of the mouse when the button was clicked.
yPos The vertical position of the mouse when the button was clicked.

Table E-14: OnDblClick Parameters (Continued)
The default value is NULL.

OnExpose

An IDL procedure that will be called when an expose message is received by the
draw widget. The procedure must be in the form:

pro expose, draw d

The default valueis NULL.
OnlInit

An IDL procedure that will be called when adraw widget isinitially created. The
procedure must be in the form:

pro init, drawid, baseld

This auto event procedure is called once when the CreateDrawWidget method is
invoked.

The default valueis NULL.
OnMotion

An IDL procedure that will be called when the mouse is moved over the draw widget
while a mouse button is pressed. The procedure must be in the form:

pro motion, drawl d, button, xPos, yPos

The default valueis NULL.

Note
Motion events may be generated continuously in response to certain operationsin
IDL. Asaresult, if you provide an event-handler for mouse motion events, your
event handler should check the reported position of the mouse to determine whether
it hasin fact moved before doing extensive processing.

Auto Event Properties IDL Connectivity Bridges

Appendix E: IDLDrawWidget Control Reference 519

Events

Events are functions or procedures that can be handled by the EDE application on
behalf of IDLDrawWidget. If an auto event property is set, its corresponding event
will not be called; instead, the auto event procedure will be called. By disabling the
auto-events, IDLDrawWidget can respond to the following standard Visual Basic

events:
* MouseDown
* MouseMove
e MouseUp

OnViewScrolled

OnViewScrolled is an IDLDrawWidget event that notifies the container application
when the graphics window has been scrolled. This event will only be sent when the

Scroll property is TRUE.

Note
You must call RegisterForEvents passing the flags to indicate the events you want

to process. Neglecting this step will send the eventsto IDL for processing.

IDL Connectivity Bridges Events

520 Appendix E: IDLDrawWidget Control Reference

Events IDL Connectivity Bridges

Appendix F

Multidimensional Array
Storage and Access

This appendix discusses the following topics.

OVErVIeWoiiiiii i 522 Storageand Accessin COM and IDL ... 524
Why Storage and Access Matter 523 2D ArrayExamples 526

IDL Connectivity Bridges 521

522 Appendix F: Multidimensional Array Storage and Access

Overview

This appendix is designed to explain how multidimensional arrays are stored and
accessed, with specific relevance to marshaling arrays between COM clients and
IDL.

Please note that if you use the Convert Mgjority property in the Export Bridge
Assistant on exported property or method parameters (described in “ Converting
Array Majority” on page 157), you do not have to worry about the information or
examplesin this appendix. For more information, see Table 7-8 in “Property
Information” on page 163.

A linear, one-dimensional (1D) vector is acontiguous list of itemsin memory. There
is no room for misinterpreting what order the items are stored and accessed.
However, moving beyond 1D can introduce contradictory definitions and
connotations, depending on the source consulted and the programming language in
question.

Accordingly, we will stay away from words of strong and conflicting meaning, such
as* column majority” and “row majority.” (You can read “ Columns, Rows, and Array
Magjority” in Chapter 15 of the Building IDL Applications manual for more
information on those terms.) What matters more than vocabulary is how
multidimensional arrays are stored in physical memory (linear memory) and how
they are accessed. For brevity's sake, we will use two-dimensional arrays (2D) to
illustrate storage, and focus on Visual Basic, C++, Win32 APIs, and IDL pro code for
how the arrays are accessed.

Note
Java has the same issues as COM with multidimensional array storage and access.
You can assume that this appendix addresses both external languages, although it
names only COM.

Overview IDL Connectivity Bridges

Appendix F: Multidimensional Array Storage and Access 523

Why Storage and Access Matter

Clients that need to pass an array to IDL need to understand the memory layouts of
the arraysin order to know if they should convert arrays from one format to the other.
Simply trying to understand which format is “row” and which is“column” major is
not enough because the definitions of those terms can differ in context.

Understanding these distinctions are critical when programming in Visual Basic and
C++ as each language natively stores arrays differently. However, using the Win32
Safearray APIs, either directly or indirectly through the ATL wrapper classes, alows
C++ codeto create safe arrays in the same order as Visual Basic. However, C++ has
the flexibility to create safe arrays ordered differently, which is useful for testing.

In summary:

e SAFEARRAYsand IDL arrays are stored differently and must be converted to
be used by each other

e Multidimensiona SAFEARRAY s are stored as “column major” in linear
memory (i.e., acolumn is stored contiguously in memory)

* IDL stores multidimensional arrays as “scanline major” (i.e., stores each
scanline contiguously in memory)

« All theWin32 APIsand ATL safe array wrapper classes access
SAFEARRAY sin column major

e Visual Basic accesses SAFEARRAY S as “column major”

¢ Native C++ arrays are stored and accessed as “row major”

IDL Connectivity Bridges Why Storage and Access Matter

524 Appendix F: Multidimensional Array Storage and Access

Storage and Access in COM and IDL

There is a difference between storage and access. Storage focuses on the way a
multidimensional array of items gets arranged in linear memory. Since all memory is
linear memory, it is paramount to understand how arrays are arranged in linear
memory. Access is the way alanguage allows interaction with a multidimensional
array.

Since we are creating and reading arrays from a computer language, we must
understand the language’s perspective on the array and how to accessit.

Arrays in COM

In order to move an array around within the COM world, it must be described by a
SAFEARRAY descriptor whose dimensions are defined by SAFEARRAY BOUND
descriptors.

SAFEARRAY Descriptors

The SAFEARRAY descriptor has the following definition:

typedef struct SAFEARRAY
{

USHORT cDi ns;

USHORT f Feat ur es;

ULONG cbEl enent s;

ULONG clLocks;

PVA D pvDat a;

SAFEARRAYBOUND r gsabound[1];
} SAFEARRAY;

This structure describes different aspects of the safe array, such astotal number of
dimensions, cDi ns, flagsindicating if the array is fixed and cannot be resized,

f Feat ur es, if there are any locks on the array, cLocks, and then a pointer to the
actual array dataitself, pvDat a.

Usually, the SAFEARRAY descriptor is wrapped by the OLE Automation data type
Variant, and the Variant itself is passed around as the data type in method calls.
Either way, an array must be wrapped by a SAFEARRAY before it can be marshaled.

SAFEARRAYBOUND Descriptors

A SAFEARRAY can have an unlimited number of dimensions, whose dimension
count isstored in cDi ns. For each dimension, there must an element of type

Storage and Access in COM and IDL IDL Connectivity Bridges

Appendix F: Multidimensional Array Storage and Access 525

SAFEARRAYBOUND, which stores the lower bound and number of elementsin the
dimension, as given by the structure:

typedef struct SAFEARRAYBOUND

{
ULONG cEl enent s;

LONG | Lbound;
} SAFEARRAYBOUND;

The SAFEARRAY descriptor member r gsabound[] isan array of
SAFEARRAYBOUND elements. (Visual Basic lets you define an el ement range
suchas“10to 20" or “-10to 10" such that thel Lbound item on the dimension is not
zero, but 10 and —10, respectively. For all of our examples, we assume the lower
bound is zero.)

Note that in COM, items are frequently in reverse order than what you would expect,
which is the case with the SAFEARRAY descriptor'sr gsabound[] member array.
You must specify the dimensionsin reverse order. For example, if you are
constructing an array of 3 rows by 5 columns (3x5), the first SAFEARRAY BOUND
array item would have itscEl ement s member set to 5, and the second item

r gsabound[] array item would haveits cEl ement s member set to 3.

However, you rarely set r gsabound[] yourself. All the Win32 API callsto create
safe arrays set these values for you, from information specified in the expected order
(i.e., 3and 5). Do be aware that if you look in memory at the actual SAFEARRAY
descriptor data, you will seether gsabound[] member array in reverse order.

Arrays in IDL

IDL arrays are stored in “scanline majority,” meaning that each scanlineis
contiguous in memory. Additionally, the dimensions are listed backwards from
standard computer-science notation.

For example, if you want to create an array of byteswith 5 columns and 3 rows, you
use the following code:

nyarr = BYTARR(5, 3)

Simply put: SAFEARRAY s and IDL arrays are arranged differently in linear
memory. Thus, when you create an array in the COM world that you want to give to
IDL, you must “convert the majority.” For how to do so in three programming
languages, see “2D Array Examples’ on page 526.

IDL Connectivity Bridges Storage and Access in COM and IDL

526 Appendix F: Multidimensional Array Storage and Access

2D Array Examples

Let'screate a 2D array that has 3 rows by 5 columns (3x5). Since the ultimate goal is
to give the array to IDL for processing, let’s pretend it is an “image.” We will set the
first row to al red, the second row to all green, and the third row to all blue. Here's
the conceptual layout of our array

rrrrr

99999

bbbbb
We will see shortly that even though the conceptual 2D layout is the above, the actual
layout in linear memory is quite different between SAFEARRAY sand IDL.

Note
In the examples below, the “red” valueisreally the ASCII character ‘r’, “green” is
the ASCII character ‘g, and so on. We use this scheme so when you look at the
actual memory, you'll see the letters “rgb”, which makes for easy reading. It is
much less confusing than using the cardinal numbers 1, 2, 3, when you are also
talking about ordinal numbering involving 1, 2, 3.

Note
These examplesillustrate how different languages store data. You should not need
to include such code in your applications to make them work; the wrapper does the
conversion for you.

Visual Basic

Here is how to create the RGB array (matrix) in Visual Basic. This example, by
default, creates avalid SAFEARRAY that is compliant with the information above,
and stored within a Variant when passed as a parameter in a method call (not shown).

Const RED As Byte = 114

Const GREEN As Byte = 103

Const BLUE As Byte = 98

‘ This creates an array with dinmension indices 0..2 & 0..4

i ncl usi ve:
i.e., it creates a 3x5 array; with “lower bounds” set to O.
Dmnm(2, 4) As Byte
For | =0 To 4
m 0, I) = RED
m 1, 1) = GREEN
m2, I) = BLUE
Next |

2D Array Examples IDL Connectivity Bridges

Appendix F: Multidimensional Array Storage and Access

Resulting linear memory:

r gbr gbr gbr gbr gb
Resulting SAFEARRAY.rgsabounds:
[0,5], [O,3]

Note the reversed order!

C++ Using ATL SAFEARRAY Wrapper Objects

527

This example uses the ATL Safearray wrapper objects: CComSafeArrayBound and
CComSafeArray, which simply wraps the callsto the native Win32 Safearray API

cdls.

CContaf eArrayBound bound[2] ;

bound[0] . Set Count (3);
bound[1] . Set Count (5) ;
CConaf eAr r ay<byt e> mat x(bound, 2) ;

| ong ndx[2];
for (int i =0; i <5; i++)

{

}

ndx[0] = 0; ndx[1] =i,

mat x. Mul ti Di mSet At (ndx, 'r");

ndx[0] = 1; ndx[1] =i,

mat x. Mul ti Di nSet At (ndx, ' g');

ndx[0] = 2; ndx[1] = i;

mat x. Mul ti Di nBet At (ndx, ' b');

Resulting linear memory:

r gbr gbr gbr gbr gb
Resulting SAFEARRAY.rgsabounds:
[0,5], [O,3]

Observe that when the CConSaf eAr r ayBound array iscreated, itisinitialized inthe
conceptually correct order (i.e., specifying the “3 rows’ by “5 columns”). But, if you
look at the actual SAFEARRAY. r gsabounds[] element in memory, you see that

they were reversed when the array was created.

/1 3 rows
/1 5 colums

C++ Using SAFEARRAY API Calls and Creating
Different Memory Layout

C++ hasthe flexibility to create SAFEARRAY sin many different ways. By calling
the SAFEARRAY API calls directly and judiciously, you can create a SAFEARRAY

IDL Connectivity Bridges

2D Array Examples

528 Appendix F: Multidimensional Array Storage and Access

with datain a different order than what is normally expected. IDL and traditional
SAFEARRAY data ordering are different. This example puts the datainto the
SAFEARRAY in the same order as IDL expectsit. In other words, it puts the datain
the opposite order that is used for SAFEARRAY s when you use the API calls to set
individual data elements.

But first, we must step back and see how the C++ language stores multidimensional
arrays. If you have the following declaration:

byte data[3][5] = {

vttty ettt

'9','9".'9",'g g,

"b','b' b, b,)
the resulting linear memory looks like this:

rrrrrgggggbbbbb

Thisisthe same order that IDL expects. However, C++ accesses the memory in the
opposite way that IDL would access the same data. For example, if you wanted to set
the ki element of the first row (O-indexed), here’'s how the two languages compare:

C++:
data[0] [k] = val ue;
IDL:
Dat a[k, 0] = val ue
However, the resulting linear memory layout is the same.

This example creates the 2D RGB array in C++ using the SAFEARRAY API calls
and arranging memory in the same layout as IDL.

/'l First, create the linear nmenory in the format: rrrrrgggggbbbbb
byte data[3][5];

for (int i =0; i <5; i++)

{
data[O][i] = "'r";
data[1][i] ="'g";
data[2][i] = 'b";

}

SAFEARRAYBOUND sabl 2] ;
sab[0] .| Lbound = O;
sab[0] . cEl ement s
sab[1] .| Lbound =
sab[1] . cEl enents 5; // 5 colums

SAFEARRAY* psa = Saf eArrayCreateEx(VT_U 1, 2, sab, NULL);
/] By copying the source data into the safearray data area,
/[l we can create the data in a different order. Since the

e

3; // 3 rows

o

2D Array Examples IDL Connectivity Bridges

Appendix F: Multidimensional Array Storage and Access 529

/1 source data is in the sane order as | DL expects, this creates
/1 a SAFEARRAY with a non-standard ordering

/1

mencpy(psa->pvData, data, sizeof(data));

Resulting linear memory:
rrrrrgggggbbbbb

Resulting SAFEARRAY. r gsabounds:
[0,5], [O,3]

The consumer of this array needs some indication that the order is different than
standard SAFEARRAY s and that it would not need to be converted before passing
off to IDL.

Hereis how to create the 2D RGB array in IDL pro code:

arr = BYTARR(5, 3)
for i=0,4 do begin

arr[i,0] = 114B

arr[i,1] = 103B

arr[i,2] = 98B
endf or

Resulting linear memory:
rrrrrgggggbbbbb

Calling hel p, arr givesthe following information:
ARR BYTE = Array[5, 3]

IDL Connectivity Bridges 2D Array Examples

530 Appendix F: Multidimensional Array Storage and Access

2D Array Examples IDL Connectivity Bridges

Index

A

abort method
COM connector, 185
Java connector, 209
ActiveX controls
class D, 52
destroying, 60
example IDL code, 61, 64
IDL object wrapper, 183
IDLcomActiveX object references, 55
IDLDrawWidget, 16
inserting into IDL widget hierarchy, 18, 53
method calls, 55
naming scheme, 52
overview, 16
program ID, 52
properties, 56

IDL Connectivity Bridges

registering, 50
skillsrequired, 20
using inIDL, 50
widget events, 57
WIDGET_ACTIVEX, 18
ActiveXCadl.pro, 61
ActiveXExcel.pro, 64
alprops.pro, 86
arraydemo.pro, 95
arrays
converting majority in Export Bridge, 157
multidimensional storage and access, 522
passing
by reference, 40
by value, 40
See also multidimensional arrays
arrays_examplejava, 244
arrray2d.java, 95

531

532

B

BackColor property, 511
Baseld property, 515
BaseName property, 511
bridge setup script, 137
bridge version.pro, 91
bridges
definition, 10
Export, 12
Export Bridge Assistant, 140
supported data types, 158
Import, 11
by reference array passing, 40
by value array passing, 40

C

classes

Java
data members, 86
methods, 84
names, 82
path, 73
properties, 86
static, 83

COM connector

about, 234

debugging, 202

error handling, 200

event handling, 197

examples, 237

methods
Abort, 185
CreateObject, 186
DestroyObject, 188
ExecuteString, 189
GetIDLObjectClassName, 190
GetIDLObjectVariableName, 191
GetIDLVariable, 192
GetL astError, 193

Index

GetProcessName, 194
SetIDLVariable, 195
Setl ProcessName, 196
reference, 181
using, 235
COM export bridge
about wrapper objects, 183
methods, 184
reference, 181
COM objects
array passing by reference, 40
class|D, 24

creating | DL.coml Dispatch objects, 28

datatype mapping, 44
datatypes, 30
definition, 16
destroying, 43
example IDL code, 46

exposing as | DL.comlDispatch objects, 18

inIDL, 22

method calls, 29

Microsoft Object Viewer, 26

optional method arguments, 30

overview, 16

program 1D, 25

properties, 37

See also ActiveX

See also IDLcomlDispatch objects

skills required, 20
com.idl.javaidl

import statement, 137

package, 300
com_export_arrays _doc.txt, 239
com_export_commandline_doc.txt, 240
com_export_grwindow_doc.txt, 268
com_export_hello_doc.txt, 238
com_export_helloex_doc.txt, 263
com_export_itwinmanip_doc.txt, 271
com_export_triwindow_doc.txt, 276
configuring the IDL-Java bridge, 73
connecting, to Java objects, 70

IDL Connectivity Bridges

connector object. See Java connector object or

COM connector object
CopyNamedArray method, 499
CopyWindow method, 500
CreateDrawWidget method, 500
createObject method

COM connector, 186

Java connector, 210
creating

IDL object in COM, 186

IDL object in Java, 210

Javaobjectin IDL, 82

D

datatypes

IDL and Java, 78

IDL-Java bridge conversion, 80

Javaand IDL, 76

supported by Export Bridge, 158
DestroyDrawWidget method, 500
destroyObject method

COM connector, 188

Java connector, 212
DoButtonPress method, 509
DoButtonRe ease method, 509
DoExit method, 500
DoExpose method, 509
DoMotion method, 510
drawable objects, 252
Drawld property, 515

DrawWidgetName property (ActiveX), 512

E
Enabled property, 512

environment variables, IDL_PREFER_64, 137

errors
handling
COM wrapper objects, 200

IDL Connectivity Bridges

533

IDL-Java bridge, 92
Javawrapper objects, 230

Java exceptions, 92
examples
ActiveX

ActiveXCadl.pro, 61
ActiveXExcel.pro, 64
IDLDrawWidget, 483
including controls, 64
SecondExample.pro, 481
VBL0adCT .pro, 488
VBPaint, 495
VBPalette.pro, 490
VBSharelD, 493

bridges

See also examples
COM.
Java.
export_grwindow_doc__define.pro, 265,
287
export_itwinmanip_doc__define.pro, 269,
292
helloworld__define.pro, 174
helloworldex__define.pro, 260, 282
I DispatchDemo.pro, 46
idlgrwindowexample _define.pro, 254,
272
idlitdirectwindowexample__define.pro,
254, 272
idlitwindowexample _define.pro, 254,
272

COM

export
com_export_arrays_doc.txt, 239
com_export_commandline_doc.txt, 240
com_export_grwindow_doc.txt, 268
com_export_hello_doc.txt, 238
com_export_helloex_doc.txt, 263
com_export_itwinmanip_doc.txt, 271
com_export_triwindow_doc.txt, 276

Index

534

import
ActiveXCal.pro, 61
ActiveX Excel.pro, 64
IDispatchDemo.pro, 46
Java
export
arrays_examplejava, 244
export_grwindow_doc_example.java,
290
export_itwinmanip_deletejava, 294
export_itwinmanip_doc_examplejava,
294
hello_examplejava, 242
helloworldex_example.java, 284
JDLCommandLinejava, 246
import
alprops.pro, 86
array2d.java, 95
arraydemo.pro, 95
bridge version.pro, 91
exception.pro, 93
GreyBandslmage.java, 100
helloJava.java, 89
hellojava.pro, 82
hellojava2.pro, 89
javaprops.pro, 83
jbexamplesjar, 103
publicmembers.pro, 86
showexcept.pro, 93
showgreyimage.pro, 100
urlread.pro, 98
URLReader.java, 98
using COM objects, 46
wrapper objects
COM, 174
Java, 176
exception.pro, 93
ExecuteStr method, 479, 501
executeString method
COM connector, 189
Java connector, 213

Index

Export Bridge
Java setup script, 137
overview, 12
programming limitations, 251
Export Bridge Assistant
building wrapper objects, 153
examples
COM, 174, 258
Java, 176, 280
exporting wrapper objects
bridge information, 159
converting array majority, 157
skipped information, 170
source object
method information, 165
modification, 173
object information, 162
parameter information, 168
property information, 163
states, 154
superclasses, 172
specifying information, 156
supported data types, 158
IDLEXBR_ASSISTANT command, 141
interface
logs panel, 146
menu bar, 143
property sheet view, 146
toolbar, 144
logs
build, 147
change, 146
export, 147
output destinations, 134
projects
bridge information, 159
opening, 149
saving, 149
updating, 150
running
from the command line, 141
from the Macros menu, 141

IDL Connectivity Bridges

in different IDL modes, 134

supported platforms and compilers, 133

Update dialog, 151

using, 142
export_grwindow_doc__define.pro, 265, 287
export_grwindow_doc_example.java, 290
export_itwinmanip_delete.java, 294
export_itwinmanip_doc _ define.pro, 269, 292
export_itwinmanip_doc_example.java, 294
exporting

IDL objectsto COM, 140

IDL objectsto Java, 140
exporting drawable objects

examples, 254

requirements, 252

F

file, IDL-Java, 73
Form_Load, VisualBasic, 478

G

getI DL ObjectClassName method

COM connector, 190

Java connector, 214
getl DL ObjectV ariableName method

COM connector, 191

Java connector, 215
getIDLVariable method

COM connector, 192

Java connector, 216
GetL astError method, COM connector, 193
GetNamedData method, 501
getProcessName method

COM connector, 194

Java connector, 217
GraphicsLevel property, 512
GreyBandslmage.java, 100

IDL Connectivity Bridges

535

H

handling Java exceptions, 92
hello_examplejava, 242
helloJavajava, 89

hellojava.pro, 82

hellojava2.pro, 89
helloworld__define.pro, 174
helloworldex__define.pro, 260, 282
helloworldex_example.java, 284
hwnd property, 515

I DispatchDemao.pro, 46, 46
IDL Java Package, 300
IDL_PREFER_64 environment variable, 137
IDLcomActiveX object, see ActiveX controls
IDLcomlDispatch objects
creating, 28
destroying, 43
method calls, 29
naming scheme, 24
overview, 18, 22
IDLDrawWidget ActiveX control
auto event properties, 517
compiling IDL code, 481
creating, 478
creating an interface and handling events,
474
do methods (runtime only), 509
drawing the interface, 475
events, 519
initializing IDL, 477, 481
integrating object graphics, 491
major features, 472
methods, 499
modifying IDL library code, 438
overview, 16
properties, 511
read only properties, 515

Index

536

register for events, 505

sharing grid control array, 492

specifying IDL path, 476

using, 19
IDLEXBR_ASSISTANT command, 141
idlgrwindowexample__define.pro, 254, 272
idlitdirectwindowexample _define.pro, 254,

272

idlitwindowexample _define.pro, 254, 272
IDL-Java bridge. See Java Import Bridge
IdIPath property, 477, 513
Import Bridge overview, 11
InitIDL method, 502
InitIDLEx method, 503
initListeners method, 210, 227
isObjectCreated method, Java connector, 218

J

Java connector

about, 234

debugging, 232

error handling, 230

event handling, 221

examples, 241

methods
abort, 209
createObject, 210
destroyObject, 212
executeString, 213
getI DL ObjectClassName, 214
getlDLObjectVariableName, 215
getIDLVariable, 216
getProcessName, 217
isObjectCreated, 218
setiIDLVariable, 219
setl ProcessName, 220

reference, 205

using, 235

Java Export Bridge
about wrapper objects, 207

Index

methods, 208
reference, 205

Java Import Bridge

classnamein IDL, 82
classes
data members, 86
methods, 84
names, 82
path, 73
properties, 86
static, 83
configuration, 73
converting data types with IDL, 80
creating IDL-Java bridge objects, 82
destroying objects, 88
IDL datatypes, 76
Java datatypes, 78
Native Interface (INI), 71
objects, 70
session object, 90
static
classes, 83
data members, 83
methods, 83
version, 90
Virtual Machine (JVM), 71

javaprops.pro, 83
jbexamplesjar, 103
JDL (IDL Java) package

classes
JDLATrray, 304
JIDLBoolean, 308
JDLByte, 315
JDLCanvas, 320
JDLChar, 360
JIDLConst, 367
JIDLDouble, 372
JDLFloat, 379
JDLInteger, 384
JDLLong, 393
JIDLObject, 410
JIDLShort, 441

IDL Connectivity Bridges

JDLString, 446
errors
JIDLADbortedException, 302
JDLBusyException, 313
JIDLException, 377
interfaces
J DL ComponentListener, 365
JDLKeyListener, 390
JDLMouselistener, 399
JIDLMouseMotionListener, 402
JDLNotifyListener, 404
JIDLNumber, 406
JDLObjectl, 427
J DL OutputListener, 439
JIDL Package class summary, 300
JDLADbortedException, 302
JDLArray, 304
JIDLBoolean, 308
JDLBusyException, 313
JDLByte, 315
JIDLCanvas, 320
JIDLChar, 360
JDLCommandLinejava, 246
J DL ComponentListener, 365
JIDLConst, 367
JIDLDouble, 372
JDLException, 377
JIDLFloat, 379
JDLInteger, 384
JDLKeyListener, 390
JDLLong, 393
JDLMouselistener, 399
JIDLMouseMotionListener, 402
JDLNotifyListener, 404
JIDLNumber, 406
JDLObject, 410
JDLObjectl, 427
J DL OutputListener, 439
JIDL Short, 441
JDLString, 446

IDL Connectivity Bridges

M

method calls
ActiveX controls, 55
COM objects, 29
Microsoft Object Viewer, 26
multidimensional arrays
2D examples, 526
storage and access, 522
COM, 524
IDL, 525

O

object properties, COM, 37
Object Viewer, 26
objects
IDL-Java bridge session
exceptions, 92
parameters, 90
Java classes
IDL-Javabridge, 70
path, 73
OLE/COM Object Viewer, 26, 32, 52
OnButtonPress autoevent, 517
OnButtonRel ease autoevent, 517
OnDblClick autoevent, 517
OnExpose autoevent, 518
Onlnit autoevent, 518
OnMotion autoevent, 518
OnViewScrolled event, 519

P

package, com.idl.javaidl, 300
Print method, 504
printing, using VisualBasic, 487
properties

ActiveX controls, 56

COM objects, 37
publicmembers.pro, 86

537

Index

538

R

RegisterForEvents method, 505
Renderer property, 513
Retain property, 513

S

Scroll property, 515
SecondExample.pro, 481
session object

IDL-Java bridge exceptions, 92

IDL-Java bridge parameters, 90
setIDLVariable method

COM connector, 195

Java connector, 219
SetNamedArray method, 506
SetNamedData method, 507
SetOutputWnd method, 478, 508
setProcessName method

COM connector, 196

Java connector, 220
showexcept.pro, 93
showgreyimage.pro, 100

U

urlread.pro, 98
URLReader.java, 98

Vv

V ariableExists method, 508
VBCopyPrint, 484
VBLoadCT.pro, 488

VBPaint, event handling, 494
VBPalette.pro, 490

VBSharelD, 492

Virtual Machine, Java (JVM), 71
Visible property, 513

Index

VisualBasic, printing, 487

\W

widget events, ActiveX, 57
WIDGET_ACTIVEX function, using, 18
widgets
WIDGET_ACTIVEX function, using, 18
wrapper objects
about, 121
building in the Export Bridge Assistant, 153
converting array majority, 157
debugging
COM, 202
Java, 232
error handling
COM, 200
Java, 230
event handling
COM, 197
Java, 221
examples
COM, 174, 237, 258
Java, 176, 241, 280
exporting, 154
exporting drawabl e objects, 252
supported data types, 158

X

XLoadCT functionality using VB, 488
Xoffset property, 515

Xsize property, 514

Xviewport property, 515

Y

Y offset property, 516
Y size property, 514
Y viewport property, 516

IDL Connectivity Bridges

	Online Manuals
	IDL Documentation
	What's New in IDL 6.3
	Installation and Licensing
	Getting Started with IDL
	Using IDL
	Building IDL Applications
	Image Processing in IDL
	iTool User's Guide
	iTool Developer's Guide
	Object Programming
	IDL Quick Reference
	IDL Reference Guide
	Scientific Data Formats
	IDL Connectivity Bridges
	External Development Guide
	Obsolete IDL Features

	Documentation for add-on Products
	ION Documentation
	ION Script User's Guide
	ION Script Quick Reference
	ION Java User's Guide

	IDL Dataminer
	IDL Wavelet Toolkit
	Medical Imaging in IDL

	Search Documentation

	IDL Connectivity Bridges
	Contents
	About the IDL Bridges
	What Is a Bridge?
	IDL Import Bridge
	COM and ActiveX
	Java

	IDL Export Bridge
	Export Bridge Assistant
	Connector Object

	Part I: Importing into IDL
	Overview: COM and ActiveX in IDL
	COM Objects and IDL
	What Are COM Objects?
	Why Use COM Objects with IDL?

	Using COM Objects with IDL
	Exposing a COM Object as an IDL Object
	Including an ActiveX Control in an IDL Widget Hierarchy
	Using the IDLDrawWidget ActiveX Control

	Skills Required to Use COM Objects
	If You Are Using COM Objects
	If You Are Using ActiveX Controls
	If You Are Using the IDLDrawWidget ActiveX Control
	If You Are Creating Your Own COM Object

	Using COM Objects in IDL
	About Using COM Objects in IDL
	Array Data Storage Format
	Object Creation
	Method Calls and Property Management
	Object Destruction
	Registering COM Components on a Windows Machine

	IDLcomIDispatch Object Naming Scheme
	Class Identifiers
	Program Identifiers
	Finding COM Class and Program IDs

	Creating IDLcomIDispatch Objects
	Method Calls on IDLcomIDispatch Objects
	Function vs. Procedure Methods
	What Happens When a Method Call Is Made?
	Data Type Conversions
	Optional Arguments
	Finding Object Methods

	Managing COM Object Properties
	Setting Properties
	Getting Properties

	Passing Parameter Arrays by Reference
	Unsupported Array Types

	References to Other COM Objects
	Destroying IDLcomIDispatch Objects
	COM-IDL Data Type Mapping
	Example: RSIDemoComponent

	Using ActiveX Controls in IDL
	About Using ActiveX Controls in IDL
	Warning: Modeless Dialogs
	Registering COM Components on a Windows Machine

	ActiveX Control Naming Scheme
	Finding COM Class and Program IDs

	Creating ActiveX Controls
	Method Calls on ActiveX Controls
	Retrieving the Object Reference

	Managing ActiveX Control Properties
	ActiveX Widget Events
	Using the ActiveX Widget Event Structure
	Dynamic Elements in the ActiveX Event Structure

	Destroying ActiveX Controls
	Example: Calendar Control
	Example: Spreadsheet Control

	Using Java Objects in IDL
	Overview of Using Java Objects
	Java Terminology
	IDL-Java Bridge Architecture

	Initializing the IDL-Java Bridge
	Configuring the Bridge

	IDL-Java Bridge Data Type Mapping
	Creating IDL-Java Objects
	Java Class Names in IDL
	Java Static Access

	Method Calls on IDL-Java Objects
	What Happens When a Method Call Is Made?
	Data Type Conversions

	Managing IDL-Java Object Properties
	Getting and Setting Properties

	Destroying IDL-Java Objects
	Showing IDL-Java Output in IDL
	The IDLJavaBridgeSession Object
	Java Exceptions
	IDL-Java Bridge Examples
	Accessing Arrays Example
	Accessing URLs Example
	Accessing Grayscale Images Example
	Accessing RGB Images Example

	Troubleshooting Your Bridge Session
	Calling System.exit
	Errors When Initializing the Bridge
	Errors When Creating Objects
	Errors When Calling Methods
	Errors When Accessing Data Members

	Part II: Exporting from IDL
	Exporting IDL Objects
	Overview of Exporting IDL Objects
	Wrapper Objects
	IDL Connector Objects and Custom Wrapper Objects
	Drawable and Nondrawable Objects

	Object Lifecycle
	Object Creation
	Object Release

	IDL Access
	IDL Ownership and Blocking

	Parameter Passing and Type Conversion
	Object Reference Use
	Array Order Conversion
	Type Conversion

	Event Handling
	Supported Platforms and IDL Modes
	Supported Compilers
	Client Machine Requirements
	Output Destinations
	IDL Licensing
	Export Bridge Assistant Licensing

	Configuring Build and Client Machines
	Configuring the Machine Running the Assistant
	Configuring the Machine Using Wrapper Objects
	Configuring the Machine Running the Wrapper Client

	Using the Export Bridge Assistant
	Export Bridge Assistant Overview
	Platform Support and Machine Configuration

	Running the Assistant
	Running from the Macros Menu
	Running from the Command Line

	Using the Assistant
	Understanding the Assistant Interface

	Working with a Project
	Opening a Project
	Saving a Project
	Updating a Project

	Building an Object
	Exporting an Object
	Specifying Information for Exporting
	Converting Array Majority
	Supported Data Types
	Bridge Information
	Source Object Information
	Property Information
	Method Information
	Parameter Information

	Information Skipped During Export
	Lifecycle Methods
	Get Property and Set Property Methods
	Drawable Object Event Handlers

	Exporting a Source Object’s Superclasses
	Modifying a Source Object After Export
	Wrapper Generation Example
	COM Wrapper Object Generation and Use
	Java Wrapper Object Generation and Use

	Using Exported COM Objects
	Overview of COM Export Objects
	COM Wrapper Objects
	Stock Wrapper Methods
	Abort
	CreateObject
	DestroyObject
	ExecuteString
	GetIDLObjectClassName
	GetIDLObjectVariableName
	GetIDLVariable
	GetLastError
	GetProcessName
	SetIDLVariable
	SetProcessName

	Event Handling
	Mouse and Keyboard Events in COM Export Objects

	Error Handling
	Debugging

	Using Exported Java Objects
	Overview of Java Export Objects
	Java Wrapper Objects
	Stock Wrapper Methods
	abort
	createObject
	destroyObject
	executeString
	getIDLObjectClassName
	getIDLObjectVariableName
	getIDLVariable
	getProcessName
	isObjectCreated
	setIDLVariable
	setProcessName

	Event Handling
	Nondrawable Java Objects
	Drawable Java Objects
	IDL Notification
	IDL Output
	Handling Specific Events
	Subclassing to Change Behavior
	Listening from Other Java Objects

	Error Handling
	Debugging

	Using the Connector Object
	About the IDL Connector Object
	Preparing to Use the IDL Connector Object
	Connector Object COM Examples
	Hello World Example with a COM Connector Object
	Data Manipulation with a COM Connector Object
	IDL Command Line with a COM Connector Object

	Connector Object Java Examples
	Note on Running the Java Examples
	Hello World Example with a Java Connector Object
	Data Manipulation with a Java Connector Object
	IDL Command Line with Java Connector Object

	Writing IDL Objects for Exporting
	Overview
	Programming Limitations
	Keyword Parameters
	Unsupported Data Types
	Array Majority and Shape

	Exporting Drawable Objects
	Requirements for Drawable Objects
	Direct Graphics Support

	Drawable Object Canvas Examples
	Java Wrapper Example
	COM Wrapper Example

	Creating Custom COM Export Objects
	About COM Export Object Examples
	Debugging Applications Using Export Objects

	Nondrawable COM Export Example
	Hello World COM Example with Custom Method

	Drawable COM Export Examples
	COM IDLgrWindow Based Histogram Plot Generator
	COM IDLitWindow Surface Manipulation
	Tri-Window COM Export Example

	Creating Custom Java Export Objects
	About Java Export Object Examples
	Note on Running the Java Examples
	Debugging Applications Using Export Objects

	Nondrawable Java Export Example
	Hello World Java Example with Additional Method

	Drawable Java Export Examples
	Java IDLgrWindow Based Histogram Plot Generator
	Java IDLitWindow Surface Manipulation

	Part III: Appendices
	IDL Java Object API
	Package Summary
	JIDLAbortedException
	JIDLArray
	JIDLBoolean
	JIDLBusyException
	JIDLByte
	JIDLCanvas
	JIDLChar
	JIDLComponentListener
	JIDLConst
	JIDLDouble
	JIDLException
	JIDLFloat
	JIDLInteger
	JIDLKeyListener
	JIDLLong
	JIDLMouseListener
	JIDLMouseMotionListener
	JIDLNotifyListener
	JIDLNumber
	JIDLObject
	JIDLObjectI
	JIDLOutputListener
	JIDLShort
	JIDLString

	COM Object Creation
	Sample IDL Object
	Export the Sample IDL Object

	Visual Basic .NET Code Sample
	Initiation Without Parameters in Visual Basic .NET
	Initiation with Parameters in Visual Basic .NET

	C++ Client Code Sample
	Initiation Without Parameters in C++
	Initiation with Parameters in C++

	C# Code Sample
	Initiation Without Parameters in C#
	Initiation with Parameters in C#

	Visual Basic 6 Code Sample
	Initiation Without Parameters in Visual Basic 6
	Initiation with Parameters in Visual Basic 6

	Java Object Creation
	Sample IDL Object
	Export the Sample IDL Object
	Note on Running the Java Examples

	Java Object Initiation Without Parameters
	Java Object Initiation with Parameters

	The IDLDrawWidget ActiveX Control
	Overview
	A Note about Versions of the IDL ActiveX Control

	Creating an Interface and Handling Events
	Drawing the Interface
	Specifying the IDL Path and Graphics Level
	Initializing IDL
	Creating the Draw Widget
	Directing IDL Output to a Text Box
	Responding to Events and Issuing IDL Commands
	Cleaning Up and Exiting

	Working with IDL Procedures
	Creating the Interface
	Initializing IDL
	Compiling the IDL Code
	Dispatching Button Events to IDL
	Cleaning Up and Exiting

	Advanced Examples
	Copying and Printing IDL Graphics
	Opening the VBCopyPrint project
	Running the VBCopyPrint Example
	Copying IDL Graphic to the Clipboard
	Printing the IDL Graphic Using IDL Object Graphics
	Executing IDL User Routines with Visual Basic
	Printing the IDL Graphic Using Visual Basic

	XLoadCT Functionality Using Visual Basic
	XPalette Functionality Using Visual Basic
	Integrating Object Graphics Using VB
	Sharing a Grid Control Array with IDL
	Handling Events within Visual Basic
	Distributing Your ActiveX Application

	IDLDrawWidget Control Reference
	IDLDrawWidget
	Methods
	CopyNamedArray
	CopyWindow
	CreateDrawWidget
	DestroyDrawWidget
	DoExit
	ExecuteStr
	GetNamedData
	InitIDL
	InitIDLEx
	Print
	RegisterForEvents
	SetNamedArray
	SetNamedData
	SetOutputWnd
	VariableExists

	Do Methods (Runtime Only)
	DoButtonPress
	DoButtonRelease
	DoExpose
	DoMotion

	Properties
	BackColor
	BaseName
	BufferId
	DrawWidgetName
	Enabled
	GraphicsLevel (Runtime/Design time)
	IdlPath
	Renderer
	Retain (Runtime/Design time)
	Visible (Runtime/Design time)
	Xsize (Design time)
	Ysize (Design time)

	Read Only Properties
	BaseId (Runtime)
	DrawId (Runtime)
	hWnd (Runtime)
	LastIdlError (Runtime)
	Scroll
	Xoffset
	Xviewport
	Yoffset
	Yviewport

	Auto Event Properties
	OnButtonPress
	OnButtonRelease
	OnDblClick
	OnExpose
	OnInit
	OnMotion

	Events
	OnViewScrolled

	Multidimensional Array Storage and Access
	Overview
	Why Storage and Access Matter
	Storage and Access in COM and IDL
	Arrays in COM
	Arrays in IDL

	2D Array Examples
	Visual Basic
	C++ Using ATL SAFEARRAY Wrapper Objects
	C++ Using SAFEARRAY API Calls and Creating Different Memory Layout

	Index

